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Cylindrical vector wave functions and applications in a source-free uniaxial chiral medium

Dajun Cheng and Yahia M. M. Antar
Department of Electrical and Computer Engineering, Royal Military College of Canada, Kingston, Ontario, Canada K7K 5L0

~Received 11 July 1997!

The uniaxial chiral medium, which is a modification of well-studied reciprocal chiral material, can be
created by embedding microscopic metal helices in an isotropic host medium in such a way that the axes of all
helices are oriented parallel to a fixed direction but distributed in random locations. Based on the concept of
characteristic waves and the method of angular spectral expansion, cylindrical vector wave functions are
rigorously developed to represent the electromagnetic fields in a source-free uniaxial chiral medium. Analysis
reveals that the solutions of the source-free vector wave equation for uniaxial chiral medium, which are
composed of two transverse waves and a longitudinal wave, can be represented in sum-integral forms of the
cylindrical vector wave functions. The addition theorem of the vector wave functions for a uniaxial chiral
medium can be directly obtained from its counterpart for the isotropic medium. To widen the application scope
of the present cylindrical vector wave functions in a uniaxial chiral medium, a generalized mode-matching
method is also proposed to study the two-dimensional electromagnetic scattering of a cylinder with an arbitrary
cross section, and a conducting circular cylinder with an inhomogeneous coating thickness. To check the
convergence of the present cylindrical vector wave functions for the multiple-body problem, electromagnetic
scattering of two circular cylinders of uniaxial chiral media is also investigated. Excellent convergence prop-
erties of the cylindrical vector wave functions in these application examples are numerically verified, which
establishes the reliability and applicability of the present cylindrical vector wave functions.
@S1063-651X~97!08312-8#

PACS number~s!: 41.20.Jb, 03.40.Kf
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I. INTRODUCTION

Vector wave functions, which were first proposed
Hansen to study electromagnetic radiation problems@1#, are
important concepts in electromagnetism. This conce
which was extensively developed by Stratton@2#, Morse and
Feshbach@3#, and Tai @4# in studying electromagnetic
boundary-value problems, seems to be gaining increasing
terest and importance. Vector wave functions have fou
versatile applications, and presented great advantages
pared with other methods~e.g., the three-dimensional mo
ment method @5#, the coupled-dipole method@6#, and
integral-equation technique@7#!. However, the vector wave
functions in any given complex media need to be develop
in order to provide methodological convenience in study
the electromagnetic properties of these materials. Rece
based on the concept of characteristic waves and the me
of angular spectral expansion, electromagnetic field rep
sentations in unbounded and bounded source-free comp
chiral-ferrite media were developed in terms of the cylind
cal vector wave functions of isotropic media@8#. Most re-
cently, Green dyadics in unbounded source-incorporated
ciprocal uniaxial bianisotropic media@9# and uniaxial
bianisotropic semiconductor material@10# have been formu-
lated in terms of the cylindrical vector wave functions, usi
the concept of spectral eigenwaves and their complete
properties. Additionally, employing the Ohm-Rayleig
method, the dyadic Green’s function in an unbounded gy
electric chiral medium was expressed in the full eigenfu
tion expansion of the cylindrical vector wave functions@11#.
Nevertheless, much effort is still needed, and to establish
reliability and applicability of the vector wave functions
studying the physical properties of the complex media, c
561063-651X/97/56~6!/7273~15!/$10.00
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vergence properties of the series involved must be ex
sively examined.

There are basically five analytical and numerical metho
which are based on the eigenfunction solution of the wa
equation, to investigate the electromagnetic phenomena,
the mode-matching method@12#, the perturbation approac
@13#, the T-matrix method@14#, the point-matching method
@15#, and the multipole technique@16#. Despite the fact that
the mode-matching method can provide rigorous criteria
other numerical methods, it is applicable only to simp
boundary-value problems, which allow the Helmholtz equ
tion to have a separation of variable-based solution. The
turbation method, which involves a Taylor expansion of t
fields on the boundary, requires the smallness of the bou
ary perturbation, so that the higher order terms can be
glected. Although theT-matrix method has been widely em
ployed to study electromagnetic boundary-value problem
isotropic media, this formulation, derived from Huygens
principle and the extinction theorem, requires that the Gr
dyadic in the exterior region must be expressible in terms
the eigenfunctions. Furthermore, due to the limited kno
edge about Huygens’s principle and the extinction theor
in complex material, it is often very difficult to obtain th
T-matrix formulation. These constraints on theT-matrix
method make it unsuitable to investigate the boundary-va
problems of complex materials, where we cannot obtain
eigenfunction expansion of the Green dyadic.~For complex
materials, the solution of the source-incorporated proble
which involves the Green dyadic, is much more difficult th
the source-free one.! Although the point-matching method i
not limited by the same constraint condition asT-matrix
method, it is well-known that it is more time consuming f
far-from-circular or -spherical geometry problems. The m
7273 © 1997 The American Physical Society
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7274 56DAJUN CHENG AND YAHIA M. M. ANTAR
tipole technique, which requires a knowledge of the eig
function expansion of the field distribution of the unit sourc
is difficult to explore for investigating the physical phenom
ena of complex materials. Considering the applicabi
scope of the mode-matching method, perturbation appro
T-matrix formulation, point-matching method, and multipo
technique, other computational approaches based on the
tor wave functions, which should be superior to these alre
existing methods, still need to be studied so as to prov
methodological convenience in investigating and explor
the physical phenomena involved in complex materials.

With recent advances in polymer synthesis techniqu
increasing attention is being paid to the analysis of the in
action of electromagnetic waves with composite materials
order to determine how to use these materials to prov
better solutions to current engineering problems@17–19#.
Recently, Lindell and co-workers@20–22# proposed a
uniaxial chiral medium, and investigated the polarizati
properties of plane-wave reflection from a planar interfa
and propagation through a slab consisting of this materia
was predicted that such a medium could be more easily
ricated that the well-studied reciprocal chiral media@17,19#.
Nevertheless, the nonplanar boundary-value problem o
uniaxial chiral medium still remains to be studied, so as
determine, interpret, and explore the physical properties
the curved structure of uniaxial chiral medium.

The uniaxial chiral medium, formed by immersing sm
metal helices in an isotropic host medium in such a way t
the axes of all helices are oriented parallel to a fixed dir
tion ~the z axis! but distributed in random locations, is
subset of the wider class referred to as bianisotropic me
Excellent works in general bianisotropic media have be
done by Post@23#, Kong @12#, and Chen@24#, among others.
In contradistinction to these general considerations,
present investigation is intended to develop the cylindri
vector wave functions to represent electromagnetic fields
source-free uniaxial chiral medium, and to propose a ge
alized mode-matching method to study the two-dimensio
electromagnetic boundary-value problems of uniaxial ch
medium. The present formulations of the cylindrical vec
wave functions are considerably facilitated by using the c
cept of a characteristic wave and the method of angular s
trum expansion@8#. This extended method leads to compa
and explicit expressions of the field representations in te
of the cylindrical vector wave functions. Furthermore,
make the efficient recursive algorithm developed by Ch
@25# available to layered structures and multiscatterers c
sisting of uniaxial chiral media, an outline to derive the a
dition theorem of the vector wave functions for a uniax
chiral medium is described. For applications of the pres
cylindrical vector wave functions, a generalized mod
matching method is proposed to study the two-dimensio
electromagnetic scattering of a cylinder with an arbitra
cross section and a conducting circular cylinder with an
homogeneous coating thickness. To check the converg
of the present cylindrical vector wave functions for
multiple-body problem, electromagnetic scattering by t
circular cylinders of uniaxial chiral media is also inves
gated. Excellent convergence properties of the cylindr
vector wave functions in these application examples are
merically verified, which establishes the reliability and app
-
,
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cability of the present formulation.
This manuscript is organized as follows. In Sec. II, bas

on the concept of characteristic waves and the method
angular spectral expansion@8#, the cylindrical vector wave
functions in a source-free uniaxial chiral medium are dev
oped to represent the electromagnetic field. It is found t
the solutions of the source-free vector wave equation fo
uniaxial chiral medium are composed of two transve
waves and a longitudinal wave. An addition theorem of t
vector wave functions for a uniaxial chiral medium can
directly obtained from its counterpart for an isotropic m
dium. In Sec. III, to illustrate how to use the present cyli
drical vector wave functions in a practical way, and exam
the convergence properties of the infinite series involved
generalized mode-matching method is proposed to study
electromagnetic scattering of a uniaxial chiral cylinder w
an arbitrary cross section, and a conducting circular cylin
with an inhomogeneous coating thickness of a uniaxial ch
medium. To check the convergence of the present cylindr
vector wave functions for a multiple-body problem, electr
magnetic scattering by two circular cylinders of uniaxial ch
ral media is also investigated. The formulations for the
numerical calculations are briefly described in this conte
and for the sake of consistency the details are arranged in
Appendixes. Extensive computations reveal that the infin
series involved in these application examples have exce
convergence properties, which establishes the reliability
applicability of the present cylindrical vector wave function
Section IV concludes this manuscript with a remark on
present cylindrical vector wave functions and the generali
mode-matching method.

In the following analysis, a harmonic exp(ivt) time de-
pendence is assumed and suppressed. In the notation
adopt, a double underline is used to represent dyadics,
boldface is used for vectors.

II. CYLINDRICAL VECTOR WAVE FUNCTIONS

From a phenomenological point of view, a homogeneo
uniaxial chiral medium can be characterized by the set
constitutive relations@20–22#

D5«= •E2j= •H, ~1a!

B5m= •H1j= •E, ~1b!

where «= 5« t(exex1eyey)1«zezez , and m= 5m t(exex1eyey)
1mzezez are the permittivity and permeability dyadics, r
spectively. j= 5jezez is the magnetoelectric pseudodyad
andj is specifically related to the chirality parameterjc by
the equationj5 i jc(m0«0)1/2, wherem0 and«0 are the per-
mittivity and permeability of free space, respectively. Hereej
denotes the unit vector in thej direction. For a lossless
uniaxial chiral medium, the constitutive parameters« t , «z ,
m t , mz , andjc are all real. Obviously, the constitutive pa
rameters of uniaxial chiral medium satisfy the reciproc
conditions @12#, therefore such a medium is reciprocal.
should be noted that the present formulations do not req
any constraint conditions on the constitutive parameters,
hence they can be applied for both lossy and lossless unia
chiral medium.
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56 7275CYLINDRICAL VECTOR WAVE FUNCTIONS AND . . .
Different from @8# which starts with theH-field vector
wave equation, the present starting point will be theE-field
one. To this end, substituting the constitutive relations~1a!
and ~1b! into the source-free Maxwell equations, anE-field
vector wave equation in this composite medium is obtain

“3m= 21
•“3E1 iv~“3m= 21

•j= •E2j= •m= 21
•“3E!

2v2~«= 2j= •m= 21
•j= !•E50. ~2!

The characteristic waves of Eq.~2! can be examined in
the Fourier spectral domain by introducing the transform
tion

E~r !5E
2`

` E
2`

` E
2`

`

E~r !e2 ik•rdkxdkydkz , ~3!

where k5kxex1kyey1kzez . Substituting Eq.~3! into Eq.
~2!, algebraic manipulation leads to

E
2`

` E
2`

` E
2`

`

W= •E~k!dkxdkydkz50, ~4!

where

W= 5F kz
21m8ky

22a
2m8kxky

2kxkz2bky

2m8kxky

kz
21m8kx

22a
2kykz1bkx

2kxkz1bky

2kykz2bkx

kx
21ky

22a8
G ,

with

a5v2« tm t ,

b5vm8j,

a85v2~«zm t1m8j2!,

andm85m t /mz . For nontrivial solutions of Eq.~4!, the de-
terminant of matrixW= operating onE~k! must be equal to
zero. Straightforward algebraic manipulation results in
characteristic equation

m8akr
41~kz

22a!~a1m8a82b2!kr
21~kz

22a!2a850,
~5!

wherekr
25kx

21ky
2.

In the following analysis, the roots of Eq.~5! are desig-
nated askr5krq ~q51, 2, 3, and 4!, which are functions of
kz . The eigenvectors of Eq.~4!, expressed in a circular cy
lindrical coordinate system, can be easily obtained from
~4! in association with the coordinate transformation

Eq~kz ,fk!5@Aq~kz!cos~f2fk!1Bq~kz!sin~f2fk!#er

1@2Aq~kz!sin~f2fk!1Bq~kz!cos~f2fk!#

3ef1ez , ~6!

where

Aq~kz!5
krqkz

kz
22a

, ~7a!
:

-

e

.

Bq~kz!5
bkrq

~m8krq
2 1kz

22a!
, ~7b!

andfk5tan21(ky /kx), andf5tan21(y/x).
Returning to Eq.~3!, and noting kr352kr1 and kr4

52kr2 , we can represent the electric field in terms of t
above-introduced eigenvectors

E~r !5 (
q51

2 E
fk50

2p

dfkE
2`

`

dkze
2 i @kzz1krqr cos~f2fk!#

3Eq~kz ,fk!Eqz~kz ,f!, ~8!

where r5(x21y2)1/2, and Eqz(kz ,fk) is the amplitude of
the spectral longitudinal component of the electric field. T
symmetric rootskr3 andkr4 are not included in the summa
tion of Eq. ~8!, since they are automatically taken into a
count as the spectral azimuthal anglefk spans from 0 to 2p.

Substituting Eq.~6! into Eq. ~8!, the solutionE~r ! of the
source-free vector wave equation~2! for an infinite uniaxial
chiral medium can be expressed in terms of the scalar cy
drical wave functions. However, in order to have a tracta
solution for boundary-value problems involving cylindric
structures of uniaxial chiral media, it is required to transfo
the expansion of Eq.~8! into a form resembling the vecto
wave solution for an isotropic medium. To this end, applyi
the angular spectral expansion toEqz(kz ,fk), under the hy-
pothesis thatEqz(kz ,fk) is continuous and separable wit
respect to its variables, yields

Eqz~kz ,fk!5 (
n52`

`

eqn~kz!e
2 infk,

and we have

E~r !5 (
q51

2 E
2`

`

dkz (
n52`

`

eqn~kz!Eqn~kz!, ~9!

where

Eqn~kz!5E
fk50

2p

dfke
2 i @kzz1krqr cos~f2fk!1nfk#Eq~kz ,fk!.

~10!

It is worth noting that in the process of obtaining Eq.~9!
from Eq. ~8!, the integration order forkz and fk has been
exchanged, because the integrand is continuous in the r
@0,2p#3(2`,1`).

Substituting into Eq.~10! the well-known identity

e2 ikrqr cos~f2fk!5 (
m52`

`

~2 i !mJm~krqr!e2 im~f2fk!,

~11!

and its derivatives with respect tor and f, after lengthy
mathematical manipulation by grouping properly the ter
involving in the integration for thefk variable and introduc-
ing the cylindrical vector wave functions, we end up wi
~see Appendix A for detail!
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7276 56DAJUN CHENG AND YAHIA M. M. ANTAR
E~r !5p (
q51

2 E
2`

`

dkz (
n52`

`

~2 i !neqn~kz!@Aq
e~kz!

3Mn
~1!~kz ,krq!1Bq

e~kz!Nn
~1!~kz ,krq!1Cq

e~kz!

3Ln
~1!~kz ,krq!#, ~12!

where the cylindrical vector wave functions are defined a

Mn
~ j !~kz ,krq!5“3@Cn

~ j !~kz ,krq!ez#, ~13a!

Nn
~ j !~kz ,krq!5

1

kq
“3Mn

~ j !~kz ,krq!, ~13b!

Ln
~ j !~kz ,krq!5¹@Cn

~ j !~kz ,krq!#, ~13c!

with kq5(krq
2 1kz

2)1/2. Here the generating function is de
fined asCn

( j )(kz ,krq)5Zn
( j )(krqr)exp@2i(kzz1nf)#, and

Zn
~ j !~krqr!5H Jn~krqr!,

Yn~krqr!,
Hn

~1!~krqr!,

Hn
~2!~krqr!,

j 51
j 52
j 53
j 54.

~13d!

Since Bessel, Neumann, and Hankel functions of the s
order satisfy the identical differential equation, the first ki
of vector wave functions in Eq.~12! can be generalized to
three other kinds corresponding to Neumann and Han
functions.

In Eq. ~12!, the weighted coefficients of the vector wav
functions are found to be

Aq
e~kz!52

2ib

kz
21m8kr

2q2a , ~14a!

Bq
e~kz!52

2a

kq~kz
22a!

, ~14b!

Cq
e~kz!5

2ikz~kq
22a!

kq
2~kz

22a!
. ~14c!

The representation for the magnetic field can be ea
obtained from the Maxwell curl equation in association w
Eqs.~1a! and ~1b!

H5T= T
•m= 21

•T= F i

v
~“3E!2T= T

•j= •T= •EG , ~15!

where

T= 5F cosf 2sin f 0

sin f cosf 0

0 0 1
G

is the coordinate transformation matrix@25#, and the super-
script T denotes the transpose of a matrix. Substituting
~12! into Eq. ~15!, after algebraic manipulation we obtain
e

el

ly

.

H~r !5p (
q51

2 E
2`

`

dkz (
n52`

`

~2 i !neqn~kz!@Aq
h~kz!

3Mn
~1!~kz ,krq!1Bq

h~kz!Nn
~1!~kz ,krq!1Cq

h~kz!

3Lqn
~11!~kz ,krq!#, ~16!

where the weighted coefficients of the vector wave functio
are determined as

Aq
h~kz!5

ikq

vmc
Bq

e~kz!, ~17a!

Bq
h~kz!5

1

m tkq
H i

v
~kz

21m8krq
2 !Aq

e~kz!2m8jFkrq
2

kq
Bq

e~kz!

2 ikzCq
e~kz!G J , ~17b!

Cq
h~kz!5

kzAq
e~kz!

vm t
1

ikzBq
h~kz!

kq
. ~17c!

The resulting Eqs.~12! and~16! indicate that solutions of
the source-free Maxwell equations in a uniaxial chiral m
dium, which can be represented in terms of the cylindri
vector wave functions, are superpositions of two transve
waves~TE for M and TM for N!, and a longitudinal wave.

The other set of field representations can be straight
wardly obtained by proceeding with theH-field vector wave
equation following the above-described procedure. Alter
tively, they can be derived via the duality principle@12#. An
addition theorem of the cylindrical vector wave functions f
a uniaxial chiral medium can be directly obtained by sub
tuting the counterpart for an isotropic medium@25# in Eqs.
~12! and ~16!.

III. APPLICATIONS AND CONVERGENCE PROPERTIES
OF THE CYLINDRICAL VECTOR WAVE FUNCTIONS

To illustrate how to use the present cylindrical vect
wave functions in a practical way, and to examine the c
vergence properties of the infinite series involved, a gene
ized mode-matching method is proposed to study the e
tromagnetic scattering of a cylinder with an arbitrary cro
section, and a conducting circular cylinder with an inhom
geneous coating thickness. To check the convergence o
present cylindrical vector wave functions for a multiple-bo
problem, electromagnetic scattering by two circular cylind
of uniaxial chiral media is also investigated.

A. An infinitely long cylinder with arbitrary cross section

In this subsection, we will try to develop a generaliz
mode-matching method to study the electromagnetic sca
ing of a cylinder with an arbitrary cross section. For th
purpose, we first choose the coordinate system so that
incident wave is along the1x axis. The cylinder is bounded
by the surfacer5 f (f), where f 8(f) is a single value and
continuous function off.

Since an arbitrary polarized electromagnetic wave in f
space can be decomposed into TMz- and TEz-polarized
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56 7277CYLINDRICAL VECTOR WAVE FUNCTIONS AND . . .
waves which are independent and reciprocal with each ot
we will only consider the TMz incident case without losing
any generality. The incident TMz wave of unit amplitude is
expanded in terms of the circular cylindrical vector wa
functions

Einc~r !5eze
2 ik0x5E

2`

`

dkz (
n52`

`

~2 i !nd~kz!

3Nn
~1!~kz ,kr!/k0 , ~18a!

H inc~r !52 ieye
2 ik0x/h05E

2`

`

dkz (
n52`

`

~2 i !n21d~kz!

3Mn
~1!~kz ,kr!/~k0h0!, ~18b!

wherekr5(k0
22kz

2)1/2, andd ~ ! is the Dirac delta function.
Here, k05v(m0«0)1/2 and h05(m0 /«0)1/2 represents the
wave number and incident wave impedance of the free sp
respectively. The scattered electromagnetic waves may h
TMz and TEz components, and should be expanded as

Esca~r !5E
2`

`

dkz (
n52`

`

~2 i !n@anMn
~4!~kz ,kr!1bn

3Nn
~4!~kz ,kr!#, ~19a!

Hsca~r !5E
2`

`

kz (
n52`

`

~2 i !n21/h0@anNn
~4!~kz ,kr!1bn

3Mn
~4!~kz ,kr!#. ~19b!

In expressions~18! and ~19!, the functionsMn
( j )(kz ,kr) and

Nn
( j )(kz ,kr) ~j 51 and 4! are the cylindrical vector wave

functions as defined in Sec. II.
The electromagnetic fields excited inside the scatte

Eint(r ) andH int(r ), can be represented in terms of the cyli
drical vector wave functions in the way we presented in S
II.

The boundary conditions to ensure the continuity of
electric and magnetic fields at the outer surface of the s
tererr5 f (f) are

Er
int sin u1Ef

int cosu5~Er
inc1Er

sca!sin u

1~Ef
inc1Ef

sca!cosu, ~20a!

Ez
int5Ez

inc1Ez
sca, ~20b!

Hr
int sin u1Hf

int cosu5~Hr
inc1Hr

sca!sin u

1~Hf
inc1Hf

sca!cosu, ~20c!

Hz
int5Hz

inc1Hz
sca, ~20d!

where all the field components are evaluated atr5 f (f),
and

u5tan21S f 8~f!

f ~f! D ,
r,

e,
ve

r,

c.

e
t-

To solve Eqs.~20a!–~20d! numerically, the infinite series
involved must be truncated. In what follows, the infini
summation is so truncated that the series is taken to
summed up from2N to N. These truncated equations ca
easily be analytically solved for the expansion coefficients
the scattered fields. For the sake of consistency, detail
formulations of the solution procedure are organized in A
pendix B. After carefully examining the final numerical re
sults, excellent convergent properties of these truncated
ries are established, which make the truncating proc
reasonable.

The bistatic echo width, which represents the density
the power scattered by the cylindrical object, is defined a

As~f!5 lim
r2`

2pr
Re$Esca~r !3@Hsca~r !#* %•er

Re$Einc~r !3@H inc~r !#* %•er
, ~21!

where the asterisk indicates complex conjugate, and R$ %
denotes the real part of the complex function.

Recalling the asymptotic expression of the Hankel fun
tion in the far region,

Hn
~2!~k0r!5S 2

pk0r D 1/2

e2 i @k0r2~2n11!p/4#, r→`,

~22!

we can rewrite expression~21! in a more explicit form,

As~f!54k0FU (
n52`

`

ane2 infU2

1U (
n52`

`

bne2 infU2G ,

~23!

To validate this generalized mode-matching process,
merical results of the present method for the scattering b
circular cylinder (r5a) and a deviated circular cylinder (r
5b cosf1Ab2 cos2f1a22b2, b,a) have been computed
and compared with that of a circular cylinder calculated
the conventional mode-matching method, respectively.
cellent agreement between the results is obtained. For c
pleteness and comparison purposes, formulations of the
ventional mode-matching method for scattering by a circu
cylinder are presented in Appendix C.

Prior to the actual computation for the scattering by
uniaxial chiral cylinder with a noncircular cross section, t
convergence of the results involved must be examined. Ta
I presents the numerical results of the convergence test f
uniaxial chiral cylinder with an elliptical cross section. It
seen that by properly choosing the truncated numberN of the
series involved, reliable results can be obtained for all sc
tering angles. The convergence check indicates that
present cylindrical vector wave functions in conjunction w
the generalized mode-matching method can be reliably
plied to study the two-dimensional electromagnetic pheno
ena of a single uniaxial chiral object. To provide criteria f
other numerical methods, Fig. 1 illustrates the bistatic e
width of an elliptical cylinder of a uniaxial chiral medium.

B. A conducting circular cylinder with an inhomogeneous
coating thickness

In this subsection, we will try to use the generaliz
mode-matching method to study the electromagnetic sca
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TABLE I. Convergence test of an elliptical cylinder of uniaxial chiral medium (TMz). The constitutive parameters of the scatterer
taken to be« t52.5«0 , «z52.1«0 , m t51.8m0 , mz51.2m0 , and jc520.5, and geometry parameters of the scatterer are taken t
semimajor axis51.6l0 , and semiminor axis51.3l0 . The major axial of the scatterer takes an angle of 3p/7 with respect to thex axis.
Square brackets indicate powers of 10.

As /l0 (dB) f50° f545° f590° f5135° f5180°

N59 0.16136@102# 0.79976@101# 20.21696@101# 20.24474@101# 0.18237@101#
N510 0.16522@102# 0.87868@101# 20.20618@101# 20.48577@101# 0.72725@101#
N511 0.16785@102# 0.96647@101# 20.96852@100# 20.29797@101# 0.83456@101#
N512 0.16981@102# 0.84121@101# 20.23009@101# 20.25108@101# 0.96109@101#
N513 0.17002@102# 0.84512@101# 20.24026@101# 20.20637@101# 0.96900@101#
N514 0.17012@102# 0.84891@101# 20.24118@101# 20.19976@101# 0.97280@101#
N515 0.17014@102# 0.84748@101# 20.23930@101# 20.20095@101# 0.97389@101#
N516 0.17014@102# 0.84752@101# 20.23936@101# 20.20097@101# 0.97393@101#
N517 0.17014@102# 0.84753@101# 20.23954@101# 20.20132@101# 0.97398@101#
N520 0.17014@102# 0.84753@101# 20.23954@101# 20.20132@101# 0.97398@101#
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ing of a conducting circular cylinder with an arbitrary coa
ing thickness of a uniaxial chiral medium. For this purpo
we first fix the coordinate system so that the incident wav
along the1x axis, the conducting core is bounded byr
5a, and the outer surface is bounded by the surfacer
5 f (f), where f 8(f) is a single value and a continuou
function of f.

Once again, the TMz incident wave with unit amplitude is
considered. The incident and scattered waves are expa
in terms of the cylindrical vector wave functions, as Eq
~18! and~19!. According to the cylindrical vector wave func
tions in uniaxial chiral material developed in Sec. II, t
fields in the coating region can be represented as

Eint5 (
q51

2

(
n52`

`

~2 i !n$eqn
~1!@Aq

eMn
~1!~krq!1Bq

eNn
~1!~krq!

1Cq
eLn

~1!~krq!#1eqn
~4!@Aq

eMn
~4!~krq!1Bq

eNn
~4!~krq!

1Cq
eLn

~4!~krq!#%, ~24a!

FIG. 1. Scattering pattern of an elliptical uniaxial chiral cylind
due to a normally incident TMz-polarized plane wave. The const
tutive parameters are« t52.5«0 , «z52.1«0 , m t51.8m0 , mz

51.2m0 , andj520.5i («0m0)1/2. The geometry parameters of th
scatters are the semimajor axis 1.6l0 and the semiminor axis
1.3l0 . The dotted line corresponds to the case where the major
of the scatterer is along thex axis, the dashed line is for the majo
axis along they axis, and the solid line is for a major axis having a
angle of 3p/7 with respect to thex axis.
,
is

ed
.

H int5 (
q51

2

(
n52`

`

~2 i !n$eqn
~1!@Aq

hMn
~1!~krq!1Bq

hNn
~1!~krq!

1Cq
hLn

~1!~krq!#1eqn
~4!@Aq

hMn
~4!~krq!1Bq

hNn
~4!~krq!

1Cq
hLn

~4!~krq!#%, ~24b!

whereeqn
(1) andeqn

(4) ~q51 and 2! are expansion coefficients
Here kz50 for the cylindrical vector wave functions, an
their weighted coefficients have been suppressed for the
of writing simplicity.

The boundary conditions at the boundaryr5a are

Ez
intur5a50, ~25a!

Ef
intur5a50, ~25b!

and the boundary conditions at the outer surface of the s
tererr5 f (f) are

Er
int sin u1Ef

int cosu5~Er
inc1Er

sca!sin u

1~Ef
inc1Ef

sca!cosu, ~26a!

Ez
int5Ez

inc1E2
sca, ~26b!

Hr
int sin u1Hf

int cosu5~Hr
inc1Hr

sca!sin u

1~Hf
inc1Hf

sca!cosu ~26c!

Hz
int5Hz

inc1Hz
sca, ~26d!

where all the field components are evaluated atr5 f (f),
and

u5tan21S f 8~f!

f ~f! D
To solve Eqs.~25! and~26! numerically, the infinite series

involved must be truncated. These truncated equations
be easily solved for the expansion coefficients of the sc

is
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TABLE II. Convergence test of a conducting circular cylinder with a coating of elliptical cross se
(TMz). The constitutive parameters of the scatterer are taken as« t52.5«0 , «z52.1«0 , m t51.8m0 , mz

51.2m0 , andjc50.5. The elliptical-shaped coating has a semimajor axis of 1.3l0 and semiminor axis of
1.1l0 , and the radius of the conducting cone is 0.8l0 . The major axial of the cross section of the coati
takes an angle of 2p/7 with respect to thex axis.

As /l0 (dB) f50° f545° f590° f5135° f5180°

N59 0.17262@102# 0.35584@101# 0.34753@101# 0.79088@101# 0.70301@101#

N510 0.17304@102# 0.33819@101# 0.37202@101# 0.79704@101# 0.71569@101#

N511 0.17311@102# 0.34114@101# 0.36576@101# 0.80054@101# 0.71605@101#

N512 0.17305@102# 0.33271@101# 0.36610@101# 0.79730@101# 0.71804@101#

N513 0.17304@102# 0.33270@101# 0.36639@101# 0.79731@101# 0.71780@101#

N514 0.17304@102# 0.33271@101# 0.36592@101# 0.79706@101# 0.71784@101#

N515 0.17304@102# 0.33271@101# 0.36592@101# 0.79705@101# 0.71753@101#

N516 0.17304@102# 0.33329@101# 0.36593@101# 0.79705@101# 0.71753@101#

N517 0.17304@102# 0.33329@101# 0.36593@101# 0.79704@101# 0.71753@101#

N520 0.17304@102# 0.33329@101# 0.36593@101# 0.79704@101# 0.71753@101#
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tered fields. For the sake of consistency, details of the
mulations of the solution procedure are organized in App
dix D.

To validate this generalized mode-matching process,
merical results of the present method for the solution o
conducting circular cylinder with a coaxial coating are co
puted and compared with those calculated by the conv
tional mode-matching method. Excellent agreement betw
the results is obtained.

Similar to Sec. III A, a convergence test of the resu
involved should be carefully examined for the scattering o
conducting circular cylinder with an inhomogeneous coat
thickness of a uniaxial chiral medium. Table II presents n
merical results of the convergence test for a conducting
cular cylinder with a uniaxial chiral coating of an elliptica
cross section. It is seen that for a proper truncated numbeN,
reliable results can be obtained for all scattering angles.
convergence check indicates that the present cylindrical
tor wave functions, in association with the generalized mo
matching method, can be reliably utilized to investigate
two-dimensional boundary-value problem of multilayer
uniaxial chiral objects. To provide criteria for other nume
cal method, Fig. 2 illustrates the bistatic echo width of
conducting circular cylinder with a uniaxial chiral coating
an elliptical cross section.

C. Two circular cylinders

To illustrate the applicability of the present cylindric
vector wave functions for multiple scattering problems,
now use the addition theorem to study the electromagn
scattering of two circular cylinders consisting of uniax
chiral media. The geometrical configuration of the cross s
tion and symbols used here are illustrated in Fig. 3, wh
the constitutive relations for cylinderj ( j 51,2) are

D5«= j•E2j= j•H, ~27a!

B5m= j•H1j= j•E, ~27b!

The normally incident plane wave of unit amplitude wi
an incident anglew inc with respect to the1x axis can be
expanded in terms of the cylindrical vector wave function
r-
-

u-
a
-
n-
en

a
g
-
r-

e
c-
-

e

ic

c-
e

:

Einc~r !5 (
n52`

`

~2 i !n@an
incMn

~1!~k0 ,r !1bn
incNn

~1!~k0 ,r !#,

~28a!

H inc~r !5 (
n52`

`

~2 i !n21/h0@an
incNn

~1!~k0 ,r !1bn
inc

3Mn
~1!~k0 ,r !#, ~28b!

where kz50 in the vector wave functions has been su
pressed, and the coordinate system in which the vector w
functions are used has been indicated by the position ve
in the vector wave functions. For the TMz-polarized incident

FIG. 2. Scattering pattern of a conducting circular cylinder wi
a coating of an elliptical cross section, due to a normally incide
TMz-polarized plane wave. The constitutive parameters of« t

52.5«0 , «z52.1«0 , m t51.8m0 , mz51.2m0 , and j
520.5i («0m0)1/2. The elliptical-shaped coating has a semimaj
axis of 1.3l0 and semiminor axis of 1.1l0 , and the radius of the
conducting cone is 0.8l0 . The dotted line corresponds to the cas
where the major axis of the coating is along thex axis, the dashed
line is for the major axis along they axis, and the solid line is for
the major axis having an angle of 2p/7 with respect to thex axis.
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plane wave, an
inc50 and bn

inc5einw inc
/k0 . For the

TEz-polarized incident plane wave,an
inc5einw inc

/k0 and bn
inc

50.
The electromagnetic fields inside the scatterers can

separately expanded in terms of the cylindrical vector w
functions in local coordinate systems:

Ej
int~r j !5 (

q51

2

(
n52`

`

~2 i !n$eqn
~ j !@Aq

e~ j !Mn
~1!~krq

~ j ! ,r j !

1Bq
e~ j !Nn

~1!~krq
~ j ! ,r j !1Cq

e~ j !Ln
~1!~krq

~ j ! ,r j !#,

~29a!

H j
int~r j !5 (

q51

2

(
n52`

`

~2 i !n$eqn
~ j !@Aq

h~ j !Mn
~1!~krq

~ j ! ,r j !

1Bq
h~ j !Nn

~1!~krq
~ j ! ,r j !1Cq

h~ j !Ln
~1!~krq

~ j ! ,r j !#

~29b!

for j 51 and 2. Herekz50 in the weighted coefficients o
the vector wave functions has been suppressed.

The scattered fields are the superpositions of those s
tered from each cylinder,

Esca5(
j 51

2

Ej
sca, Hsca5(

j 51

2

H j
sca, ~30!

whereEj
sca andH j

sca can be represented in theOj coordinate
system as

Ej
sca~r j !5 (

n52`

`

~2 i !n@an
~ j !Mn

~4!~k0 ,r j !1bn
~ j !Nn

~4!~k0 ,r j !#,

~31a!

H j
sca~r j !5 (

n52`

`

~2 i !n21/h0@an
~ j !Nn

~4!~k0 ,r j !1bn
~ j !

3Mn
~4!~k0 ,r j !#, ~31b!

FIG. 3. Geometry configuration of the structure of two circu
cylinders.
e
e

at-

Based on the addition theorem for the Bessel and Han
functions @25#, the transformation of the cylindrical vecto
wave functions from theOq coordinate to theOp coordinate
are obtained:

Qn
~1!~k,rq!5 (

m52`

`

Qm
~1!~k,r p!Jm2n~kdpq!e

i ~m2n!wpq,

~32a!

Qn
~4!~k,rq!5 (

m52`

`

Qm
~1!~k,r p!Hm2n

~2! ~kdpq!e
i ~m2n!wpq,

~32b!

whereQ5M or N, and (dpq ,wpq) is the position ofOq in
the Op coordinate system.

Using the addition theorem of the cylindrical vector wa
functions, and applying the boundary conditions at each s
face of the scatterer to ensure the tangential componen
electric and magnetic fields are continuous, a set of coup
linear equations involving the scattering coefficients are
tained. For the sake of consistency, details of the formu
tions of the solution procedure are organized in Appendix

The bistatic echo width of the scattering structure can
obtained by using the asymptotic expansion of the Han
function, Eq.~22!, and r1,2'r6d cosw for r→`, which
result in

As54k0U (
n52`

`

e2 inw~e2 ik0d coswbn
~1!1eik0d coswbn

~2!!U2

14k0U (
n52`

`

e2 inw~e2 ik0d coswan
~1!1eik0d coswan

~2!!U2

.

~33!

For a TMz-polarized incident plane wave, the first term in th
right-hand side of Eq.~33! represents the copolarized ech
width, and the second the cross-polarized one. Fo
TEz-polarized incident plane wave, the first and second te
in Eq. ~33! stand for the cross-polarized and copolariz
echo widths, respectively.

Again, it is important to examine the convergence pro
erties of the final results for the series involved in the sc
tering by two circular cylinders of uniaxial chiral media
Table III presents numerical results for the convergence
of this scattering structure. It is seen that for proper trunca
numberN, reliable results can be obtained for all scatteri
angles. The convergence check indicates that the presen
lindrical vector wave functions can be reliably applied
study the two-dimensional multiple-body problem
uniaxial chiral media. To provide criteria for future refe
ences, Figs. 4 and 5 illustrates the bistatic echo width of
circular cylinders of uniaxial chiral media for TMz and TEz
polarized incident wave, respectively~see also Table IV!.

IV. CONCLUDING REMARKS

In the present investigation, cylindrical vector wave fun
tions are developed to represent the electromagnetic field
source-free uniaxial chiral medium. The formulation
greatly facilitated by using the concept of characteris
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TABLE III. Convergence test of two circular cylinders due to a TMz polarized incident plane wave. Th
constitutive parameters of the media are taken to bem t

(1)51.4m0 , mz
(1)51.2m0 , « t

(1)52.5«0 , «z
(1)52.3«0 ,

andjc
(1)520.3, andm t

(2)51.3m0 , mz
(2)51.1m0 , « t

(2)52.3«0 , «z
(2)52.2«0 , andjc

(2)520.5. The geometry
parameters of the scatterer are taken to bea150.4l0 , a250.7l0 , andd51.5l0 . The incident angle is 2p/9.

As /l0 (dB) f50° f545° f590° f5135° f5180°

N53 0.59801@101# 0.16374@102# 0.22021@101# 20.26449@100# 20.37412@101#

N54 0.61982@101# 0.17101@102# 20.21969@100# 0.10312@100# 0.77866@100#

N55 0.68301@101# 0.17475@102# 20.14073@100# 20.43131@101# 20.35832@101#

N56 0.67600@101# 0.17331@102# 20.33208@100# 20.11678@101# 20.57911@101#

N57 0.67632@101# 0.17322@102# 20.34480@100# 20.12621@101# 20.57445@101#

N58 0.67629@101# 0.17322@102# 20.34512@100# 20.12668@101# 20.57480@101#

N59 0.67629@101# 0.17322@102# 20.34509@100# 20.12663@101# 20.57479@101#

N510 0.67629@101# 0.17322@102# 20.34508@100# 20.12663@101# 20.57479@101#
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waves and the method of angular spectral expansion.
formulation developed here generalizes the canonical s
tions of vector wave functions for isotropic media, and
covers the case of uniaxial media (j50). For applications of
cylindrical vector wave functions, a generalized mod
matching method is proposed to study the two-dimensio
electromagnetic scattering of a uniaxial chiral cylinder w
an arbitrary cross section and a conducting circular cylin
with an inhomogeneous coating thickness of a uniaxial ch
medium. To check the convergence of the present cylindr
vector wave functions for nontrivial problems~such as
multiple-body problems!, electromagnetic scattering by tw
circular cylinders of uniaxial chiral media is also inves
gated. Excellent convergence properties of the cylindr
vector wave functions in these application examples are
merically verified, which establishes the reliability and app
cability of the present theory.

Here it is worthwhile to point out the differences betwe

FIG. 4. Scattering pattern of two circular cylinders, due to
normally incident TMz-polarized plane wave. The constitutive p
rameters of the cylinders are taken to bem t

(1)51.4m0 , mz
(1)

51.2m0 , « t
(1)52.5«0 , «z

(1)52.3«0 , and jc
(1)520.3, and m t

(2)

51.3m0 , mz
(2)51.1m0 , « t

(2)52.3«0 , «z
(2)52.2«0 , and jc

(2)

520.5. The geometry parameters of the scatterer area150.4l0 ,
a250.7l0 , andd51.5l0 . The dotted line corresponds to the ca
of w inc50, the dashed line tow inc5p/2, and the solid line tow inc

52p/9.
he
u-
-

-
al

r
l

al

l
u-
-

the present formulations and those of previous works@8–11#.
~1! Noting the available results on the theory of cylindric
vector wave functions in an unbounded source-incorpora
composite medium@9–11#, the starting points of these for
mulations~i.e., the concept of spectral eigenwaves and th
completeness properties, and the Ohm-Rayleigh meth!
would fail to work out to the present case, which treats t
finite-region source-free medium.~2! Although the basis of
the present formulations~i.e., the concept of a characteristi
wave and the method of angular spectrum expansion! is the
same as that of Ref.@8#, they treat fundamentally differen
materials~i.e., the constitutive relations of the materials a
different! and the starting points are different~the present
formulation starts with theE-field vector wave equation,
while Ref. @8# began with theH-field one!. The present for-
mulations can be considered as an alternative application
ample of the method of angular spectrum expansion.~3! In
Ref. @8#, only the simplest application example~i.e., the scat-

FIG. 5. Scattering pattern of two circular cylinders, due to
normally incident TEz-polarized plane wave. The constitutive pa
rameters of the coating are taken to bem t

(1)51.4m0 , mz
(1)

51.2m0 , « t
(1)52.5«0 , «z

(1)52.3«0 , and jc
(1)520.3, and m t

(2)

51.3m0 , mz
(2)51.1m0 , « t

(2)52.3«0 , «z
(2)52.2«0 , and jc

(2)

520.5. The geometry parameters of the scatterer area150.5l0 ,
a250.6l0 , andd51.3l0 . The dotted line corresponds to the ca
of w inc50, the dashed line tow inc5p/2, and the solid line tow inc

52p/9.
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TABLE IV. Convergence test of two circular cylinders due to a TEz-polarized incident plane wave. Th
constitutive parameters of the coating are taken to bem t

(1)51.4m0 , mz
(1)51.2m0 , « t

(1)52.5«0 , «z
(1)

52.3«0 , andjc
(1)520.3, andm t

(2)51.3m0 , mz
(2)51.1m0 , « t

(2)52.3«0 , «z
(2)52.2«0 , andjc

(2)520.5. The
geometry parameters of the scatterer are taken to bea150.5l0 , a250.6l0 , and d51.3l0 . The incident
angle is 2p/9.

As /l0 (dB) f50° f545° f590° f5135° f5180°

N53 0.50854@101# 0.13746@102# 20.10151@101# 20.23631@101# 0.76576@100#

N54 0.76736@101# 0.14066@102# 0.49795@101# 0.37525@100# 20.51318@101#

N55 0.83736@101# 0.13728@102# 0.35951@101# 0.68597@100# 20.33950@101#

N56 0.84118@101# 0.13697@102# 0.36374@101# 0.86800@100# 20.35224@101#

N57 0.84116@101# 0.13694@102# 0.36486@101# 0.85633@100# 20.35213@101#

N58 0.84114@101# 0.13694@102# 0.36490@101# 0.85583@100# 20.35207@101#

N59 0.84114@101# 0.13694@102# 0.36490@101# 0.85588@100# 20.35207@101#

N510 0.84114@101# 0.13694@102# 0.36490@101# 0.85588@100# 20.35207@101#
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n a
tering of an infinitely long circular cylinder! was considered
while the present work reports more complicated appli
tions ~i.e., electromagnetic scattering by a cylinder of an
bitrary cross section, a conducting circular cylinder with
inhomogeneous coating thickness, and two circular cy
ders!. Moreover, a convergence check of the results in th
complicated application examples are extensively examin
which establishes the reliability and applicability of th
present cylindrical vector wave functions for more comp
structures.~4! To make use of the present cylindrical vect
wave functions in the complicated applications, a gene
ized mode-matching method is proposed, and numer
implementation is extensively carried out in the pres
work.

It should be pointed out that the generalized mo
matching method presented here, although not requiring
eigenfunction expansion of the Green dyadic, is applica
only to small aspect-ratio scatterers like the conventio
T-matrix method. For large aspect-ratio scatterers, the c
lenge of convergence and time consumption must be ta
into account. However, this method is obviously superior
the conventional mode-matching method@12,25#, which can
only be applicable to a circular cylindrical structure, the p
turbation method@13# which is only suitable to a near
circular cylindrical structure, and theT-matrix method@14#
and multipole technique@16#, both of which require a knowl-
edge of a source-incorporated solution, and may be rega
as the modified form of the point-matching method@15#,
since they can be utilized under the same conditions
have the same challenges for a complex structure. Using
addition theorem of the cylindrical vector wave functio
and the formulations for a single scatterer, a homogeniza
theory for the uniaxial chiral composite media may be est
lished, where a pair-distributed function can result from e
periment, theoretical investigation, or numerical results.

It is of interest to note that the cylindrical vector wav
functions can be expanded as discrete sums of the sphe
vector wave functions@26#; therefore the present cylindrica
vector wave functions could be extended to solve proble
of spherical structures. Although excellent convergence
efficiency of the present cylindrical vector wave functions
tackling the two-dimensional physical phenomena have b
demonstrated by extensive numerical computation,
should carefully examine the convergence and efficiency
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the theory in actual computation when using the spher
vector wave functions for three-dimensional electromagn
phenomena. Nevertheless, it is believed that the presen
lindrical vector wave functions and the generalized mo
matching method would be helpful in analyzing and explo
ing the physical phenomena associated with the bound
value problems of layered structures, as well
multiscatterers consisting of uniaxial chiral media.

APPENDIX A: DETAIL OF THE FIELD
REPRESENTATIONS

Substituting expressions~6! and ~11! in Eq. ~9!, we have
the electric field expanded in terms of the eigenvectors i
circular cylindrical coordinate system

E~r !5 (
q51

2 E
2`

`

dkz (
n52`

`

eqn~kz!E
fk50

2p

dfk

3e2 i @kzz1krqr cos~f2fk!#$@Aq~kz!cos~f2fk!

1Bq~kz!sin~f2fk!#er1@2Aq~kz!sin~f2fk!

1Bq~kz!cos~f2fk!#ef1ez% ~A1!

Taking the derivatives of Eq.~11! with respect tor and f,
respectively, we have

cos~f2fk!e
2 ikrqr cos~f2fk!

5 (
m52`

`

~2 i !m21
]Jm~krqr!

krq]r
e2 im~f2fk!

~A2!

and

sin~f2fk!e
2 ikrqr cos~f2fk!

52 (
m52`

`

~2 i !m
mJm~krqr!

krqr
e2 im~f2fk!.

~A3!

Inserting Eqs.~A2!, ~A3! and ~11! into Eq. ~A1!, we ob-
tain
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E~r !5 (
q51

2 E
2`

`

dkz (
n52`

`

eqn~kz!@Pn~kz!er1Qn~kz!ef

1Rn~kz!ez#, ~A4!

where

Pn~kz!5E
fk50

2p

dfk (
m52`

` F ~2 i !m21
]Jm~krqr!

krq]r
Aq~kz!

2~2 i !m
mJm~krqr!

krqr
Bq~kz!Ge2 i ~kzz1mf!1 i ~m2n!fk

52p~2 i !nF i ]Jn~krqr!Aq~kz!

krq]r

2
nJn~krqr!Bq~kz!

krqr Ge2 i ~kzz1nf! ~A5!

Qn~kz!5E
fk50

2p

dfk (
m52`

` F ~2 i !m21
]Jm~krqr!

krq]r
Bq~kz!

1~2 i !m
mJm~krqr!

krqr
Aq~kz!Ge2 i ~kzz1mf!1 i ~m2n!fk

52p~2 i !nF i ]Jn~krqr!Bq~kz!

krq]r

1
nJn~krqr!Aq~kz!

krqr Ge2 i ~kzz1nf!, ~A6!

and

Rn~kz!5E
fk50

2p

dfk (
m52`

`

@~2 i !mJm~krqr!#

3e2 i ~kzz1mf!1 i ~m2n!fk

52p~2 i !nJn~krqr!e2 i ~kzz1nf! ~A7!

By introducing the cylindrical vector wave function
~13a!–~13c! and recalling the complete property of this set
functions@3,25#, it is reasonable to assume the electric fie
in a uniaxial chiral medium can be represented in the form
Eq. ~12!. Then, comparing the coordinate components of
~12! with those of Eq.~A4! where Pn(kz), Qn(kz), and
Rn(kz) are determined by Eqs.~A5!–~A7!, we derive a set of
equations

Aq
e~kz!52

2i

krq
Bq~kz!, ~A8!

kz

kq
Bq

e~kz!1 iCq
e~kz!52

2

krq
Aq~kz!, ~A9!

and

krq
2

kq
Bq

e~kz!2 ikzCq
e~kz!52. ~A10!
f

f
.

The solutions to this set of linear equations~A8!–~A10!,
in conjunction with Eqs.~7a! and ~7b!, result in the expres-
sions of Eqs.~14a!–~14c!.

APPENDIX B: DETAILED PROCEDURE
FOR THE SOLUTIONS OF EQS. „20a…–„20d…

For simplicity, we introduce

Vqn
p~ j !~r!52

in

r
Zn

~ j !~krqr!Cq
p~kz50!2krqZn

~ j !8~krqr!

3Aq
p~kz50!, ~B1!

Xqn
p ~r!5KrqJn~krqr!Bq

p~kz50!, ~B2!

Yqn
p~ j !~r!52

in

r
Zn

~ j !~krqr!Aq
p~kz50!1krqZn

~ j !8~krqr!

3Cq
p~kz50!, ~B3!

wherer5 f (f), q51 and 2, andp5e andh.
Multiplying both sides of Eqs.~20a!–~20d! with eimf(m

52N,2N11,...,N21,N) and integrating from 0 to 2p, we
end up with

(
q51

2

@ Iqe#@eq#5@ I ~2!#@a#, ~B4!

(
q51

2

@ Iqh#@eq#1
k0

ivm0
@ I ~2!#@b#5@P#@ I #, ~B5!

(
q51

2

@Aqe#@eq#2@ I ~5!#@b#5@Q#@ I #, ~B6!

(
q51

2

@Aqh#@eq#52
k0

ivm0
@ I ~5!#@a#, ~B7!

where@a# and@b# are column vectors of the expansion coe
ficients of the scattered waves, respectively, and

~ I qp!mn5E
f50

2p

~2 i !n8e2 i ~n82m8!f@Yqn8
p

~r!sin u

1Vqn8
p

~r!cosu#df, ~B8!

~ I ~2!!mn5E
f50

2p

~2 i !n8e2 i ~n82m8!fF2
in8

r
Hn8

~2!
~k0r!sin u

2k0Hn8
~2!8~k0r!cosuGdf, ~B9!

~P!nm5
1

ivm0
E

f50

2p

~2 i !n8e2 i ~n82m8!fF in

r
Jn8~k0r!sin u

1k0Jn8
8 ~k0r!cosuGdf, ~B10!

~Q!nm5E
f50

2p

~2 i !n8e2 i ~n82m8!fJn8~k0r!df, ~B11!
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~Aqp!mn5E
f50

2p

~2 i !n8e2 i ~n82m8!fXqn8
p

~r!df,

~B12!

~ I ~5!!mn5E
f50

2p

~2 i !n8e2 i ~n82m8!fk0Hn8
~2!

~k0r!df

~B13!

for q51 or 2, p5e or h, m, nP@1, 2N11#, and m85m
2(N11), n85n2(N11). Here @I # is the
(2N11)-dimension unit vector, and the primes over t
Bessel and Hankel functions denote the derivatives with
spect to the arguments.

Straightforward algebraic manipulation for Eqs.~B4!–
~B7!, we obtain

@a#5F ivm0

k0
@ I ~2!#21@D~1!#

1@ I ~5!#21@D~2!#G21F ivm0

k0
@ I ~2!#21@P#

1@ I ~5!#21@Q#G , ~B14!

@b#5F k0

ivm0
@D~1!#21@ I ~2!#

1@D~2!#21@ I ~5!#G21

†@D~1!#21@P#2@D~2!#21@Q#‡,

~B15!

where

@D~1!#5@ I1h#@C~2!#1@ I2h#@C~1!#, ~B16!

@D~2!#5@A1e#@C~2!#1@A2h#@C~1!#, ~B17!

and

@C~1!#5†@ I1e#21@ I2e#2@A1h#21@A2h#‡21F @ I1e#21@ I ~2!#

1
k0

ivm0
@A1h#21@ I ~5!#G , ~B18!

@C~2!#5†@ I2e#21@ I1e#2@A2h#21@A1h#‡21F @ I2e#21@ I ~2!#

1
k0

ivm0
@A2h#21@ I ~5!#G . ~B19!

After numerically evaluating the matrices involved, Eq
~B14! and~B15! would result in the expansion coefficients
the scattered fields.

APPENDIX C: ELECTROMAGNETIC SCATTERING
BY A UNIAXIAL CHIRAL CIRCULAR CYLINDER

Here, we will present explicit expressions of expans
coefficients of the scattered field for the scattering o
-

.

n
a

uniaxial chiral circular cylinder of radiusr0 . In the case of a
TMz-polarized incident plane wave illuminating along th
1x axis, incident electromagnetic fields can be expanded
terms of the circular cylindrical vector wave functions,
presented in Eqs.~18a! and~18b!. The electromagnetic fields
excited inside the scatterer can be represented in terms o
cylindrical vector wave functions in the way we presented
Sec. II. Also, the scattered electromagnetic waves may h
TMz and TEz components, and should be expanded as E
~19a! and ~19b!.

Applying the widely employed mode-matching metho
@12,25# to have the boundary conditions of continuous ta
gential electric and magnetic fields satisfied at the outer
face of the scattererr5r0 , the expansion coefficients of th
scattered fields are derived as

an52
2E0

ph0r0Dn~r0!
d~kz!@V1n

e ~r0!X2n
h ~r0!

2V2n
e ~r0!X1n

h ~r0!# ~C1!

and

bn5
E0

Dn~r0!
d~kz!FJn~k0r0!Cn~r0!1

i

h0
Jn8~k0r0!Dn~r0!G ,

~C2!

where

Vqn
p ~r0!5Aq

p~kz!krqJn8~krqr0!1
in

r0
Cq

p~kz!Jn~krqr0!,

~C3!

Xqn
p ~r0!5Bq

p~kz!krqJn~krqr0! ~C4!

for q51 and 2 andp5e andh. In Eqs.~C1! and ~C2!,

Cn~r0!52k0Hn
~2!8~k0r0!@V1n

h ~r0!X2n
h ~r0!

2V2n
h ~r0!X1n

h ~r0!#2 iv«0Hn
~2!@V1n

e ~r0!V2n
h ~r0!

2V2n
e ~r0!V1n

h ~r0!#, ~C5!

Dn~r0!5k0Hn
~2!8~k0r0!@X1n

e ~r0!X2n
h ~r0!

2X2n
e ~r0!X1n

h ~r0!#1 iv«0Hn
~2!@V1n

e ~r0!X2n
e ~r0!

2V2n
e ~r0!X1n

e ~r0!#, ~C6!

Dn~r0!52k0Hn
~2!~k0r0!Cn~r0!2 iv«0Hn

~2!8~k0r0!Dn~r0!.
~C7!

Due to the emergence of the Dirac delta functiond(kz) in
Eq. ~C1! and ~C2!, the infinite integration of thekz variable
for the scattered fields has actually disappeared. Using
asymptotic expression of the Hankel function in the far
gion, Eq. ~22!, the bistatic echo width of this structure E
~21! can be rewritten in a more explicit form
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As~f!5
4

k0E0
2 FU(

n50

`

~21!ndnan cos~nf!U2

1U(
n50

`

~21!ndnbn cos~nf!U2G , ~C8!

wheredn is the Neumann factor, i.e.,dn51 for n50, and 2
for n.0.

APPENDIX D: SOLUTIONS FOR SCATTERING
COEFFICIENTS OF A CONDUCTING CIRCULAR

CYLINDER WITH AN INHOMOGENEOUS COATING
THICKNESS OF UNIAXIAL CHIRAL MEDIUM

For simplicity, we introduce

Vqn
p~ j !~r!52

in

r
Zn

~ j !~krqr!Cq
p~kz50!2krqZn

~ j !8~krqr!

3Aq
p~kz50!, ~D1!

Xqn
p~ j !~r!5krqZn

~ j !~krqr!Bq
p~kz50!, ~D2!

Yqn
p~ j !~r!52

in

r
Zn

~ j !~krqr!Aq
p~kz50!1krqZn

~ j !8~krqr!

3Cq
p~kz50!, ~D3!

wherer5 f (f) or r5a, q51 or 2, p5e or h, andZn
( j )( )

5Jn( ) or Zn
( j )( )5Hn

(2)( ) for j 51 and 4, respectively.
From the boundary conditions Eqs.~25a! and ~25b! at r

5a, we have

@e1
~4!#5@A11#@e1

~1!#1@A12#@e2
~1!#, ~D4!

@e2
~4!#5@A21#@e1

~1!#1@A22#@e2
~1!# ~D5!

where@eq
( j )# ~for q51 or 2 andj 51 or 4! are column vec-

tors of the expansion coefficients for the internal fields of
coating, and

@A11#5†@X2~4!#21@X1~4!#

2@V2~4!#21@V1~4!#‡21
†@V2~4!#21@V1~1!#

2@X2~4!#21@X1~1!#‡, ~D6!

@A12#5†@X2~4!#21@X1~4!#

2@V2~4!#21@V1~4!#‡21
†@V2~4!#21@V2~1!#

2@X2~4!#21@X2~1!#‡, ~D7!

@A21#5†@X1~4!#21@X2~4!#

2@V1~4!#21@V2~4!#‡21
†@V1~4!#21@V1~1!#

2@X1~4!#21@X1~1!#‡, ~D8!

@A22#5†@X1~4!#21@X2~4!#

2@V1~4!#21@V2~4!#‡21
†@V1~4!#21@V2~1!#

2@X1~4!#21@X2~1!#‡, ~D9!
e

and the matrices involved in Eqs.~D6!–~D9! are all diagonal
with the diagonal elements given as

~Xp
q~ j !!mn5Xqn8

p~ j !
~r5a!d~m82n8!, ~D10!

~Vp
q~ j !!mn5Vqn8

p~ j !
~r5a!d~m82n8! ~D11!

for m,nP@1,2N11# and m85m2(N11), n85n
2(N11).

After substituting Eqs.~D4! and ~D5! into Eqs. ~26a!–
~26d!, multiplying both sides of the resulting equations wi
eimf (m52N,2N11,...,N21,N), and integrating from 0
to 2p, we end up with

(
q51

2

@ Iqe#@eq
~1!#5@ I ~2!#@a#, ~D12!

(
q51

2

@ Iqh#@eq
~1!#1

k0

ivm0
@ I ~2!#@b#5@P#@ I #, ~D13!

(
q51

2

@Aqe#@eq
~1!#2@ I ~5!#@b#5@Q#@ I #, ~D14!

(
q51

2

@Aqh#@eq
~1!#52

k0

ivm0
@ I ~5!#@a#, ~D15!

where@a# and@b# are column vectors of the expansion coe
ficients of the scattered waves, and

@ Iqp#5@Bp
q~1!#1@Bp

1~4!#@A1q#1@Bp
2~4!#@A2q#, ~D16!

@Aqp#5@Cp
q~1!#1@Cp

1~4!#@A1q#1@Cp
2~4!#@A2q#,

~D17!

with

~Bp
q~ j !!mn5E

f50

2p

~2 i !n8e2 i ~n82m8!f@Yqn8
p~ j !

~r!sin u

1Vqn8
p~ j !

~r!cosu#df, ~D18!

~ I ~2!!mn5E
f50

2p

~2 i !n8e2 i ~n82m8!fF2
in8

r
Hn8

~1!
~k0r!sin u

2k0Hn8
~1!8~k0r!cosuGdf, ~D19!

~P!nm5
1

ivm0
E

f50

2p

~2 i !n8e2 i ~n82m8!fF in8

r
Jn8~k0r!sin u

1k0Jn8
8 ~k0r!cosuGdf, ~D20!

~Q!nm5E
f50

2p

~2 i !n8e2 i ~n82m8!fJn8~k0r!df, ~D21!
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~Cp
q~ j !!mn5E

f50

2p

~2 i !n8e2 i ~n82m8!fXqn8
p~ j !

~r!df,

~D22!

~ I ~5!!mn5E
f50

2p

~2 i !n8e2 i ~n82m8!fk0Hn8
~2!

~k0r!df

~D23!

for q51 or 2, andp5e or h.
Straightforward algebraic manipulation for Eqs.~D12!–

~D15! yields

@a#5F ivm0

k0
@ I ~2!#21@D~1!#

1@ I ~5!#21@D~2!#G21F ivm0

k0
@ I ~2!#21@P#

1@ I ~5!#21@Q#G , ~D24!

@b#5F k0

ivm0
@D~1!#21@ I ~2!#

1@D~2!#21@ I ~5!#G21

†@D~1!#21@P#2@D~2!#21@Q#‡,

~D25!

where

@D~1!#5@ I1h#@C~2!#1@ I2h#@C~1!#, ~D26!

@D~2!#5@A1e#@C~2!#1@A2h#@C~1!#, ~D27!

and

@C~1!#5†@ I1e#21@ I2e#2@A1h#21@A2h#‡21F @ I1e#21@ I ~2!#

1
k0

ivm0
@A1h#21@ I ~5!#G , ~D28!

@C~2!#5†@ I2e#21@ I1e#2@A2h#21@A1h#‡21F @ I2e#21@ I ~2!#

1
k0

ivm0
@A2h#21@ I ~5!#G . ~D29!
APPENDIX E: DETAILS OF THE SCATTERING OF TWO
UNIAXIAL CHIRAL CIRCULAR CYLINDERS

The boundary conditions atr15a1 can be written as

@A1
~1!#@ainc#1@B1

~1!#@a~1!#1@C1
~1!#@a~2!#5 (

q51

2

@Dq
e~1!#@eq

~1!#,

~E1!

@A1
~1!#@binc#1@B1

~1!#@b~1!#1@C1
~1!#@b~2!#

52
ivm0

k0
(
q51

2

@Dq
h~1!#@eq

~1!#, ~E2!

@A2
~1!#@ainc#1@B2

~1!#@a~1!#1@C2
~1!#@a~2!#

52
ivm0

k0
(
q51

2

@Eq
h~1!#@eq

~1!#, ~E3!

@A2
~1!#@binc#1@B2

~1!#@b~1!#1@C2
~1!#@b~2!#5 (

q51

2

@Eq
e~1!#@eq

~1!#,

~E4!

and the boundary conditions atr25a2 can be written as

@A1
~2!#@ainc#1@C1

~2!#@a~1!#1@B1
~2!#@a~2!#5 (

q51

2

@Dq
e~2!#@eq

~2!#,

~E5!

@A1
~2!#@binc#5@C1

~2!#@b~1!#1@B1
~2!#@b~2!#

52
ivm0

k0
(
q51

2

@Dq
h~2!#@eq

~2!#, ~E6!

@A2
~2!#@ainc#1@C2

~2!#@a~1!#1@B2
~2!#@a~2!#

52
ivm0

k0
(
q51

2

@Eq
h~2!#@eq

~2!#, ~E7!

@A2
~2!#@binc#1@C2

~2!#@b~1!#1@B2
~2!#@b~2!#5 (

q51

2

@Eq
e~2!#@eq

~2!#,

~E8!

where

~A1
~ j !!mn5~2 i !n8Jm82n8~k0d!ei ~m82n8!f jJm8

8 ~k0aj !,
~E9!



56 7287CYLINDRICAL VECTOR WAVE FUNCTIONS AND . . .
~A2
~ j !!mn5~2 i !n8Jm82n8~k0d!ei ~m82n8!f jJm8~k0aj !,

~E10!

~B1
~ j !!mn5~2 i !n8Hn8

~2!8~k0aj !d~m82n8!, ~E11!

~B2
~ j !!mn5~2 i !n8Hn8

~2!
~k0aj !d~m82n8!, ~E12!

~C1
~ j !!mn5~2 i !n8Hm82n8

~2!
~2k0d!ei ~m82n8!f jJm8~k0aj !,

~E13!

~C2
~ j !!mn5~2 i !n8Hm82n8

~2!
~2k0d!ei ~m82n8!f jJm8

8 ~k0aj !,
~E14!
s

ic

E

s.

o

cu
.

~Dq
p~ j !!mn5

~2 i !n8

k0
Fkrq

~ j !Jn8
8 ~krq

~ j !aj !Aq
p~ j !~kz50!

1
in8

r j
Jn8~krq

~ j !aj !Cq
p~ j !~kz50!Gd~m82n8!,

~E15!

~Eq
p~ j !!mn5

~2 i !n8

k0
krq

~ j !~krq
~ j !aj !Bq

p~ j !~kz50!d~m82n8!,

~E16!

with f150, f25p, j 51 or 2, p5e or h, m,nP@1,2N
11#, and m85m2(N11), n85n2(N11). Straightfor-
ward manipulation of Eqs.~E1!–~E8! will give rise to solu-
tions of the scattering coefficient vectors@a(1)#, @b(1)#, and
@a(2)#, @b(2)#, respectively.
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