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Cylindrical vector wave functions and applications in a source-free uniaxial chiral medium
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The uniaxial chiral medium, which is a modification of well-studied reciprocal chiral material, can be
created by embedding microscopic metal helices in an isotropic host medium in such a way that the axes of all
helices are oriented parallel to a fixed direction but distributed in random locations. Based on the concept of
characteristic waves and the method of angular spectral expansion, cylindrical vector wave functions are
rigorously developed to represent the electromagnetic fields in a source-free uniaxial chiral medium. Analysis
reveals that the solutions of the source-free vector wave equation for uniaxial chiral medium, which are
composed of two transverse waves and a longitudinal wave, can be represented in sum-integral forms of the
cylindrical vector wave functions. The addition theorem of the vector wave functions for a uniaxial chiral
medium can be directly obtained from its counterpart for the isotropic medium. To widen the application scope
of the present cylindrical vector wave functions in a uniaxial chiral medium, a generalized mode-matching
method is also proposed to study the two-dimensional electromagnetic scattering of a cylinder with an arbitrary
cross section, and a conducting circular cylinder with an inhomogeneous coating thickness. To check the
convergence of the present cylindrical vector wave functions for the multiple-body problem, electromagnetic
scattering of two circular cylinders of uniaxial chiral media is also investigated. Excellent convergence prop-
erties of the cylindrical vector wave functions in these application examples are numerically verified, which
establishes the reliability and applicability of the present cylindrical vector wave functions.
[S1063-651%97)08312-9

PACS numbes): 41.20.Jb, 03.40.Kf

I. INTRODUCTION vergence properties of the series involved must be exten-
sively examined.

Vector wave functions, which were first proposed by There are basically five analytical and numerical methods,
Hansen to study electromagnetic radiation probl¢ijsare  which are based on the eigenfunction solution of the wave
important concepts in electromagnetism. This conceptequation, to investigate the electromagnetic phenomena, i.e.,
which was extensively developed by Stratf@h, Morse and the mode-matching methdd 2], the perturbation approach
Feshbach[3], and Tai [4] in studying electromagnetic [13], the T-matrix method[14], the point-matching method
boundary-value problems, seems to be gaining increasing ind5], and the multipole technique.6]. Despite the fact that
terest and importance. Vector wave functions have foundhe mode-matching method can provide rigorous criteria for
versatile applications, and presented great advantages cowther numerical methods, it is applicable only to simple
pared with other method&.g., the three-dimensional mo- boundary-value problems, which allow the Helmholtz equa-
ment method[5], the coupled-dipole method6], and tion to have a separation of variable-based solution. The per-
integral-equation techniqug’]). However, the vector wave turbation method, which involves a Taylor expansion of the
functions in any given complex media need to be developedjelds on the boundary, requires the smallness of the bound-
in order to provide methodological convenience in studyingary perturbation, so that the higher order terms can be ne-
the electromagnetic properties of these materials. Recentlglected. Although th&-matrix method has been widely em-
based on the concept of characteristic waves and the methgdbyed to study electromagnetic boundary-value problems of
of angular spectral expansion, electromagnetic field represotropic media, this formulation, derived from Huygens's
sentations in unbounded and bounded source-free composiinciple and the extinction theorem, requires that the Green
chiral-ferrite media were developed in terms of the cylindri-dyadic in the exterior region must be expressible in terms of
cal vector wave functions of isotropic medi@]. Most re-  the eigenfunctions. Furthermore, due to the limited knowl-
cently, Green dyadics in unbounded source-incorporated reedge about Huygens'’s principle and the extinction theorem
ciprocal uniaxial bianisotropic medid9] and uniaxial in complex material, it is often very difficult to obtain the
bianisotropic semiconductor mater{dl0] have been formu- T-matrix formulation. These constraints on tfematrix
lated in terms of the cylindrical vector wave functions, usingmethod make it unsuitable to investigate the boundary-value
the concept of spectral eigenwaves and their completeneggoblems of complex materials, where we cannot obtain the
properties. Additionally, employing the Ohm-Rayleigh eigenfunction expansion of the Green dyadior complex
method, the dyadic Green’s function in an unbounded gyromaterials, the solution of the source-incorporated problems,
electric chiral medium was expressed in the full eigenfuncwhich involves the Green dyadic, is much more difficult than
tion expansion of the cylindrical vector wave functiqdd].  the source-free oneAlthough the point-matching method is
Nevertheless, much effort is still needed, and to establish theot limited by the same constraint condition &smatrix
reliability and applicability of the vector wave functions in method, it is well-known that it is more time consuming for
studying the physical properties of the complex media, confar-from-circular or -spherical geometry problems. The mul-
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tipole technique, which requires a knowledge of the eigencability of the present formulation.

function expansion of the field distribution of the unit source, This manuscript is organized as follows. In Sec. I, based
is difficult to explore for investigating the physical phenom- on the concept of characteristic waves and the method of
ena of complex materials. Considering the applicabilityangular spectral expansids], the cylindrical vector wave
scope of the mode-matching method, perturbation approacfinctions in a source-free uniaxial chiral medium are devel-
T-matrix formulation, point-matching method, and multipole OPed to represent the electromagnetic field. It is found that
technique, other computational approaches based on the véf€ solutions of the source-free vector wave equation for a
tor wave functions, which should be superior to these alreadyniaxial chiral medium are composed of two transverse
existing methods, still need to be studied so as to providd/aves and a longitudinal wave. An addition theorem of the
methodological convenience in investigating and exploringv_eCtor Wave_functlons for a uniaxial chiral me_d'“m can be
the physical phenomena involved in complex materials. directly obtained from its counterpart for an isotropic me-

With recent advances in polymer synthesis techniquesg".Jml' In ?ec. i, tcf) |I|u§,trate_ how to ?sel the pres(;ant cyI|.n—
increasing attention is being paid to the analysis of the inter= rical vector wave functions in a practical way, and examine
he convergence properties of the infinite series involved, a

action of electromagnetic waves with composite materials, ir} . . .
order to determine how to use these materials to providéJenerallzed m_ode-matc_hlng metho_d IS proposed to study_ the
better solutions to current engineering problefag—19 electromagnetic scattering of a uniaxial chiral cylinder with

Recently, Lindell and co-worker§20—23 proposed a an arbitrary cross section, and a conducting circular cylinder
Uniaxial ,chiral medium, and investigated the polarizationw'th an inhomogeneous coating thickness of a uniaxial chiral

properties of plane-wave reflection from a planar interfacéne?'um' To cf:heclg the fconverg?tpcle %ftge preslent cyllmdtncal
and propagation through a slab consisting of this material. [yector wave functions for a multiple-body probiem, electro-
was predicted that such a medium could be more easily faghagnetic scattering by two circular cylinders of uniaxial chi-

ricated that the well-studied reciprocal chiral mefid, 19. ral media is also investigated. The formulations for these

Nevertheless, the nonplanar boundary-value problem of gumerical calculations are briefly described in this context,

uniaxial chiral medium still remains to be studied. so as toand for the sake of consistency the details are arranged in the

determine, interpret, and explore the physical properties ngpen(Ijixes. Ex.tensive computgtions reveal that the infinite
the curved structure of uniaxial chiral medium series involved in these application examples have excellent

|| convergence properties, which establishes the reliability and

The uniaxial chiral medium, formed by immersing small - A~ .
metal helices in an isotropic host medium in such a way tha' ppl|lcab|I|ty of the present cyllndrlca_ll vector wave functions.
ection IV concludes this manuscript with a remark on the

the axes of all helices are oriented parallel to a fixed direc: T ) :
tion (the z axis) but distributed in random locations, is a present cyhndncal vector wave functions and the generalized
subset of the wider class referred to as bianisotropic media{'.mde'mamhmg. method. . L .

Excellent works in general bianisotropic media have been In the fqllowmg analysis, a harmonic expf) time d?'

done by Posf23], Kong[12], and Cherj24], among others. pendence is assumed.anq suppressed. In the notations we
In contradistinction to these general considerations, th dopt, a dOUble underline is used to represent dyadics, and
present investigation is intended to develop the cylindrical oldface is used for vectors.

vector wave functions to represent electromagnetic fields in a

source-free uniaxial chiral medium, and to propose a gener-  Il. CYLINDRICAL VECTOR WAVE FUNCTIONS

alized mode-matching method to study the two-dimensional E h logical point of Vi h
electromagnetic boundary-value problems of uniaxial chiral . roma phenomenoiogical point of view, a homogeneous
medium. The present formulations of the cylindrical vector"'n'ax!aI _ch|ral m_edlum can be characterized by the set of
wave functions are considerably facilitated by using the Conponsututlve relation$20-27
cept of a characteristic wave and the method of angular spec-
trum expansionj8]. This extended method leads to compact
and explicit expressions of the field representations in terms
of the cylindrical vector wave functions. Furthermore, to B=g-H+¢-E, (1b)
make the efficient recursive algorithm developed by Chew

[25] available to layered structures and multiscatterers corwhere e =g (g6, +€,6)+¢,66,, and u=u(ee+ee)
sisting of uniaxial chiral media, an outline to derive the ad-+ u,€,€, are the permittivity and permeability dyadics, re-
dition theorem of the vector wave functions for a uniaxial spectively. {=£e,e, is the magnetoelectric pseudodyadic,
chiral medium is described. For applications of the presenand¢ is specifically related to the chirality parametgrby
cylindrical vector wave functions, a generalized mode-the equatioré=i¢.(uoeo) Y2 wWhereug ande, are the per-
matching method is proposed to study the two-dimensionahittivity and permeability of free space, respectively. Here
electromagnetic scattering of a cylinder with an arbitrarydenotes the unit vector in thg direction. For a lossless
cross section and a conducting circular cylinder with an in-uniaxial chiral medium, the constitutive parameteys ¢,,
homogeneous coating thickness. To check the convergengg, u,, and¢; are all real. Obviously, the constitutive pa-
of the present cylindrical vector wave functions for arameters of uniaxial chiral medium satisfy the reciprocal
multiple-body problem, electromagnetic scattering by twoconditions[12], therefore such a medium is reciprocal. It
circular cylinders of uniaxial chiral media is also investi- should be noted that the present formulations do not require
gated. Excellent convergence properties of the cylindricahny constraint conditions on the constitutive parameters, and
vector wave functions in these application examples are nuhence they can be applied for both lossy and lossless uniaxial
merically verified, which establishes the reliability and appli- chiral medium.

D=g-E—¢&-H, (1a
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Different from [8] which starts with theH-field vector bk,q
wave equation, the present starting point will be Exéield Bq(ky) = K rk—a)’ (7b)
one. To this end, substituting the constitutive relatioha K BTz
and (1b) into the source-free Maxwell equations, Brfield T R
vector wave equation in this composite medium is obtained‘?de ¢k_t"fm (ky7k), and ¢=tan Ky/x). _
Returning to EQ.(3), and notingk,;=—Kk,; and k,,

VXu L VXE4+ioVXu . 6. E—é- u L. VXE =—kpz_, we can represent the electric field in terms of the
o ( L & ) above-introduced eigenvectors

—0¥(g—£&ut§)-E=0. 2)
2 2 o .
The characteristic waves of E) can be examined in E(r)=2>, f d¢kf dkpe™ ke Hpap 0089~ 9]
the Fourier spectral domain by introducing the transforma- a=1 J =0 o
tion X Eq(kz » PK) qu( K, ), ®

E(r)zfm fw J'w E(r)efikwdkxdkydkz, 3) wherepz(x2+y2‘_)1’2,_ and Eg(k,,¢y) is the amp.litu.de of

—o) -t the spectral longitudinal component of the electric field. The
o _ symmetric rootk,; andk,, are not included in the summa-

where k=k,e,+k,e,+k,e,. Substituting Eq.(3) into Eq.  tion of Eq. (8), since they are automatically taken into ac-

(2), algebraic manipulation leads to count as the spectral azimuthal anglgspans from 0 to 2.
Substituting Eq(6) into Eq. (8), the solutionE(r) of the
J” f“’ "W E(k)dk dk,dk,=0 (4  source-free vector wave equati@ for an infinite uniaxial
Y B B YR chiral medium can be expressed in terms of the scalar cylin-
drical wave functions. However, in order to have a tractable
where solution for boundary-value problems involving cylindrical
structures of uniaxial chiral media, it is required to transform
K+u'ki—a  —p'kky,  —kk bk, the expansion of Eq(8) into a form resembling the vector
wW=| —p'kk, K+u'ki-a —kk,—bk,|, wave solution for an isotropic medium. To this end, applying
—kek,—bk,  —kyk,+ bk, K2+ ké— a’ the angular spectral expansioniq,(k,,¢y), under the hy-
pothesis thatE,(k,,¢y) is continuous and separable with
with respect to its variables, yields
a=w’euy, *

Eaqrlkz b= 2 equlkoe "%,

b=wu'¢,

and we have
a’'=w (st p' £,

2 0
and ' = u;/u,. For nontrivial solutions of Eq(4), the de- E(r)= - dk eqn(K,)Eqn(k 9)
terminant of matrix\y operating onE(k) must be equal to ( q§=:1 — Zn;oo an( k) Eqn(ka),

zero. Straightforward algebraic manipulation results in the

characteristic equation where

' A4 2 Fal 2\ L2 2 \247 -
wn'ak +(k;—a)(a+pu'a’—bo)ki+(k;—a)“a’ =0, E (k)= 2 A 1kezKpgp COS 6= NOIE (K ).
5 4 $=0 ‘
10
wherek?=kZ+k?. 10
In the following analysis, the roots of E5) are desig- |t is worth noting that in the process of obtaining EE)
nated ak,=k,q (4=1, 2, 3, and 4 which are functions of from Eq. (8), the integration order fok, and ¢, has been

k,. The eigenvectors of Eq4), expressed in a circular cy- exchanged, because the integrand is continuous in the range
lindrical coordinate system, can be easily obtained from Eqfg,27]x (— o0, + ).

(4) in association with the coordinate transformation Substituting into Eq(10) the well-known identity
Eq(kz, 1) =[Aq(kz)COL ¢ — i) +By(k,)sin(p— i) e, s oo
) @ 1kpgp COLd— i) — ™I (k g Imé— ¢
1= Aq(k) SN~ )+ Bq(k,)cOS 6~ )] ; w2, (70 In0)
Xeyte,, (6) (1)

and its derivatives with respect t@ and ¢, after lengthy
mathematical manipulation by grouping properly the terms
K K involving in the integration for the), variable and introduc-
Aq(k,) = L (7a  ing the cylindrical vector wave functions, we end up with
kK, — (see Appendix A for detail

where
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2 )
En=r2 | dk 2 (- eq(k)[AG(k,)

XM 511)( Kz Kpq) + BZ( k,) Ngl)( Kz,Kpg) + Cg( k)
X Lgl)(kzukpq)]! (12

where the cylindrical vector wave functions are defined as

M (K Kog) = VX[ Wk, Kg)erl, (138
(i) _1 )

N (e Koa) = o VX MRk ) (13D
LKy Kyq) = VW (K, Ky, (130

with k= (k2,+kZ)¥2 Here the generating function is de-
fined as«lr(nlf(kz,kpq):zg”(kpqp)exp[—i(kzz+n¢)], and
Jn(kpqp)l ] = 1
_ Yo(kygp),  j=2
() - NI )
Zn (kpqp) Hl(ql)(kpqp)’ J:3 (13d)
HP (kyqp), =4
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2 . ©
H=m2 | dk 2 (~D)"eq(k)lAq(k)
XM (K, Kyq) +BR(KIN (K, K q) + Ch(k,)
XL (K, Ky, (16)

where the weighted coefficients of the vector wave functions
are determined as

h _ qu
Aq(kz)_ w_luc Bg(kz)v

(173

2

1 (i k
h _ 2 1,2 ' Pq
Bq(kz)_ kg {5 (kz+u kpq)Ag(kZ)—M & Kq BS(kz)
—ikzcg(kz)} : (17b
k,AS(k,) ik,BM(k

WMy q

The resulting Eqs(12) and(16) indicate that solutions of
the source-free Maxwell equations in a uniaxial chiral me-
dium, which can be represented in terms of the cylindrical

Since Bessel, Neumann, and Hankel functions of the samgector wave functions, are superpositions of two transverse
order satisfy the identical differential equation, the first kindwaves(TE for M and TM for N), and a longitudinal wave.

of vector wave functions in Eq12) can be generalized to

The other set of field representations can be straightfor-

three other kinds corresponding to Neumann and Hankekardly obtained by proceeding with tiié-field vector wave

functions.
In Eq. (12), the weighted coefficients of the vector wave
functions are found to be

2ib

e -
Aq(kz)_ k;-i-yfkiqfa’ (143

2a

k(K2—a)’

e = —

(14b
B 2ik,(k;—a)

TR 14

o

The representation for the magnetic field can be easil

obtained from the Maxwell curl equation in association with

Egs.(1a) and(1b)

i
H=T" 5T Z(VXE)—IT-g-I-E , (15
where
cos¢p -—sing O
T=|sing cos¢ O
0 0 1

is the coordinate transformation matfit5], and the super-

equation following the above-described procedure. Alterna-
tively, they can be derived via the duality princigte2]. An
addition theorem of the cylindrical vector wave functions for
a uniaxial chiral medium can be directly obtained by substi-
tuting the counterpart for an isotropic mediy2b6] in Egs.
(12) and (16).

IIl. APPLICATIONS AND CONVERGENCE PROPERTIES
OF THE CYLINDRICAL VECTOR WAVE FUNCTIONS

To illustrate how to use the present cylindrical vector
wave functions in a practical way, and to examine the con-
vergence properties of the infinite series involved, a general-
ized mode-matching method is proposed to study the elec-
tromagnetic scattering of a cylinder with an arbitrary cross

%ection, and a conducting circular cylinder with an inhomo-

geneous coating thickness. To check the convergence of the
present cylindrical vector wave functions for a multiple-body
problem, electromagnetic scattering by two circular cylinders
of uniaxial chiral media is also investigated.

A. An infinitely long cylinder with arbitrary cross section

In this subsection, we will try to develop a generalized
mode-matching method to study the electromagnetic scatter-
ing of a cylinder with an arbitrary cross section. For this
purpose, we first choose the coordinate system so that the
incident wave is along the-x axis. The cylinder is bounded
by the surfacep=f(¢), wheref’(¢) is a single value and
continuous function oftp.

script T denotes the transpose of a matrix. Substituting Eq. Since an arbitrary polarized electromagnetic wave in free

(12) into Eq. (15), after algebraic manipulation we obtain

space can be decomposed into FMand TE-polarized
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waves which are independent and reciprocal with each other, To solve Egqs(209—(20d numerically, the infinite series
we will only consider the TMincident case without losing involved must be truncated. In what follows, the infinite
any generality. The incident TMwvave of unit amplitude is summation is so truncated that the series is taken to be
expanded in terms of the circular cylindrical vector wavesummed up from—N to N. These truncated equations can
functions easily be analytically solved for the expansion coefficients of
. the scattered fields. For the sake of consistency, details of
. _ o ) formulations of the solution procedure are organized in Ap-
EM(r)=ee” o= f_mdkzn;m (=1)"a(ky) pendix B. After carefully examining the final numerical re-
sults, excellent convergent properties of these truncated se-
XN (kg k) 1Ko, (189 ries are established, which make the truncating process
reasonable.
_ _ o * The bistatic echo width, which represents the density of
H™(r)= —ieye*"‘OX/ o= dk, > (=" ts(k,) the power scattered by the cylindrical object, is defined as
e

Re[E*qr) X[H*r)]*} e,
Re{EmC(r)X[Hmc(r)]*}~ep ’

XMk, k) (Ko70), (18b) A, ()= lim 27p

p—o©

21

wherek,= (k§—k2)*2 and () is the Dirac delta function.
Here, ko= w(uoeo)Y? and 5= (uo/eo)Y? represents the .
wave number and incident wave impedance of the free Spacg,er;zotes”t.he rﬁal part of th.e comple>§ funcftlohn. Hankel
respectively. The scattered electromagnetic waves may ha\{.e gc?hln? the e_lsymptotlc expression of the Hankel func-
TM, and TE components, and should be expanded as lon in the tar region,

where the asterisk indicates complex conjugate, anfl} Re

2 1/2 )
H(nz)(kop)z(_ ) e*l[kopf(2n+l)77/4], p—0,

Esca(r)=f dk, > (—)"a.M(k, k,)+by, mKop
— 0 n=—ow (22)
X NG (kg k)T, (198  we can rewrite expressiof21) in a more explicit form,
" ) 2 ] 2
Hs°a(r)=f7 kzn;_ (=" Y molaNP(k, k) +b, A $)=4ko n;x ae "’ + n;w b,e "¢
(23
XMk, k,)]. (19h)

To validate this generalized mode-matching process, nu-

In expressiong18) and (19), the functions E]j)(kz,k ) and merical res_ults of the present mthod fo_r the scat_tering by a
N(j)(k k) (j=1 and 4 are the cylindrical vectgr wave circular cylinder p=a) and a deviated circular cylindep (
fur;]ctiél'"nspas defined in Sec. I =Db cos¢+b? cos’p+a’—b? b<a) have been computed

The electromagnetic fields excited inside the scattererand compargd with that of a cjrcular cylinder CalCl.Jlated by
E(r) andH™(r), can be represented in terms of the cylin-fhe conventional mode-matching method, respectively. Ex-

drical vector wave functions in the way we presented in Sec(.:e"ent agreement bet\_/veen the results is Obt"’?'”ed- For com-
I pleteness and comparison purposes, formulations of the con-

The boundary conditions to ensure the continuity of thevent|onal mode-matching method for scattering by a circular

electric and magnetic fields at the outer surface of the Scagylln(jer are presented in Appen.dlx C. .
tererp=f() are Prior to the actual computation for the scattering by a

uniaxial chiral cylinder with a noncircular cross section, the
Ei’?t sin 6+ Eigt cos 0= (Ei’?c+ ESdsin 6 convergence of the results involved must be examined. Table
| presents the numerical results of the convergence test for a
+(E$°+ E¥9cosd, (203 uniaxial chiral cylinder with an elliptical cross section. It is
seen that by properly choosing the truncated nurhbef the
Eint_ ginc; psca (20b) series involved, reliable results can be obtained for all scat-
o z tering angles. The convergence check indicates that the
present cylindrical vector wave functions in conjunction with
the generalized mode-matching method can be reliably ap-
+ (Higc+ H5cos 6, (209 plied to study the two-dimensional electromagnetic phenom-
ena of a single uniaxial chiral object. To provide criteria for
Hint_ pinc pysca (200) other numerical methods, Fig. 1 illustrates the bistatic echo
z z z width of an elliptical cylinder of a uniaxial chiral medium.

HIM™ sin 9+ HY' cos 6= (HI'+H®sin 6

where all the field components are evaluatedp atf(¢),
and B. A conducting circular cylinder with an inhomogeneous

coating thickness

() In this subsection, we will try to use the generalized
’ mode-matching method to study the electromagnetic scatter-
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TABLE I. Convergence test of an elliptical cylinder of uniaxial chiral medium (JMrhe constitutive parameters of the scatterer are
taken to beg,=2.5q, &,=2.1e¢, uy=21.8uq, p#,=1.2uq, and ¢.=—0.5, and geometry parameters of the scatterer are taken to be
semimajor axis 1.6\, and semiminor axis 1.3\,. The major axial of the scatterer takes an angle #fBwith respect to thex axis.
Square brackets indicate powers of 10.

A, l\g (dB) $=0° ¢$=45° $=90° ¢$=135° ¢$=180°
N=9 0.16136+02] 0.79976+01] —0.21696+ 01] —0.24474+01] 0.18237+01]
N=10 0.1652p+02] 0.87868+01] —0.20618+01] —0.48577+01] 0.72725%+01]
N=11 0.16785+02] 0.96647+01] —0.96852+00] —0.29797+01] 0.83456+01]
N=12 0.1698[+02] 0.84121+01] —0.23009+01] —0.25108+01] 0.96109+01]
N=13 0.1700p+02] 0.84512+01] —0.24026+01] —0.20637+01] 0.96900 + 01]
N=14 0.1701p+02] 0.84891+01] —0.24118+01] —0.19976+01] 0.97280+01]
N=15 0.17014+02] 0.84748+01] —0.23930+01] —0.2009% + 01] 0.97389+01]
N=16 0.17014+02] 0.84752+01] —0.23936+01] —0.20097+01] 0.97393+01]
N=17 0.17018+02] 0.84753+01] —0.23954+ 01] —0.20132+01] 0.97398+01]
N=20 0.17014+02] 0.84753+01] —0.23954+01] —0.20132+01] 0.97398+01]

ing of a conducting circular cylinder with an arbitrary coat- 2 =

ing thickness of a uniaxial chiral medium. For this purpose, HM=> > (
we first fix the coordinate system so that the incident wave is g=1n=-=
along the +x axis, the conducting core is bounded py
=a, and the outer surface is bounded by the surface
=f(¢), wheref’(¢) is a single value and a continuous
function of ¢.

Once again, the TMincident wave with unit amplitude is wheree(l) ande(“) (g=1 and 2 are expansion coefficients.
considered. The incident and scattered waves are expandegl e k,=0 for the cylindrical vector wave functions, and

in terms of the cylindrical vector wave functions, as EQS.hejr Weighted coefficients have been suppressed for the sake
(18) and(19). According to the cylindrical vector wave func- of writing simplicity.

tions in unlaX|aI_ch|raI _materlal developed in Sec. Il, the 114 boundary conditions at the boundary a are
fields in the coating region can be represented as
2 [

“{e<1>[AgM (D(kyq) + BgNg”(kpq)

+CAL P (K,q) 1+ el TAGM V(K q) + BENLV (K )

+CaLLY (Ky) 1}, (24b)

. int —
Elnt: 2 2 n{e(l)[AgMgl)(kpq)‘l‘ Bngql)(kpq) EZ |p:a 0, (258)
g=1n=-=
_—
+CEL P (Kyq) 1+ ST ASM P (K ) + BENLY (K ) Eglo=a=0, (25b)
+ ey (4) ..
Cabn” (ko) I} (243 and the boundary conditions at the outer surface of the scat-
tererp="F(¢) are
30 T ' ' T . . .
E}" sin 6+Ey' cos 6= (E;°+E>sin 6
20 |-

+(E°+EYAcosy, (26a
E|nt Elnc+ Esca’ (26b)

HIM sin 9+ HY' cos 6= (HI'+H5sin

bistatic echo width (dB)

+ (H$°+ HY9cos 6 (260

0 60 120 180 240 300 360 HIM=HMC+ H3% (260
scattering angle (degree)
where all the field components are evaluatedp atf(¢),
FIG. 1. Scattering pattern of an elliptical uniaxial chiral cylinder gnd
due to a normally incident TMpolarized plane wave. The consti-
tutive parameters ares;=2.5¢,, e,=2.1eq, ui=1.8ug, u,
=1.2uq, andé=—0.5(eque)*2 The geometry parameters of the
scatters are the semimajor axis Mg6and the semiminor axis
1.3\;. The dotted line corresponds to the case where the major axis
of the scatterer is along theaxis, the dashed line is for the major ~ To solve Eqs(25) and(26) numerically, the infinite series
axis along they axis, and the solid line is for a major axis having an involved must be truncated. These truncated equations can
angle of 37/7 with respect to thex axis. be easily solved for the expansion coefficients of the scat-

I f'<¢>)
f=tan (f(¢)
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TABLE Il. Convergence test of a conducting circular cylinder with a coating of elliptical cross section
(TM,). The constitutive parameters of the scatterer are takes,a%.5¢q, £,=2.1gg, u=21.8uq, K,
=1.2uq, and§.=0.5. The elliptical-shaped coating has a semimajor axis oflaéhd semiminor axis of
1.1\, and the radius of the conducting cone isN}8 The major axial of the cross section of the coating
takes an angle of 2/7 with respect to thex axis.

A, I\, (dB) $=0° $=145° $=90° $=135° $=180°
N=9 0.1726+02]  0.35584+01] 0.34753+01] 0.79088+01] 0.7030L+01]
N=10 0.17308+02]  0.33819+01] 0.37202+01] 0.79704+01] 0.71569+ 01]
N=11 0.17311+02] 0.34114+01] 0.36576+01] 0.80054+01] 0.7160%+01]
N=12 0.17305+02]  0.33271+01] 0.36610+01] 0.79730+01] 0.71804+01]
N=13 0.1730f+02]  0.33270+01] 0.36639+01] 0.7973[+01] 0.71780+01]
N=14 0.17308+02]  0.33271+01] 0.36592+01] 0.79706+01] 0.71784+01]
N=15 0.17308+02]  0.33271+01] 0.36592+01] 0.79705+01] 0.71753+01]
N=16 0.17308+02]  0.33329+01] 0.36593+01] 0.79705+01] 0.71753+01]
N=17 0.17308+02]  0.33329+01] 0.36593+01] 0.79704+01] 0.71753+01]
N=20 0.17308+02]  0.33329+01] 0.36593+01] 0.79704+01] 0.71753+01]

tered fields. For the sake of consistency, details of the for- * ' _
mulations of the solution procedure are organized in Appen- E™(r)= >, (—i)"a"™M(ky,r)+bMND(ky,r)],
dix D. n=-e

To validate this generalized mode-matching process, nu- (283
merical results of the present method for the solution of a
conducting circular cylinder with a coaxial coating are com- o
puted and compared with those calculated by the conven- HIno(r) = 2 (=Y no[air?cNgl)(koJ)_'_bir?c

tional mode-matching method. Excellent agreement between n=—o
the results is obtained. W

Similar to Sec. Ill A, a convergence test of the results XMy (Ko,1)], (28b
involved should be carefully examined for the scattering of a
conducting circular cylinder with an inhomogeneous coating

thickness of a uniaxial chiral medium. Table Il presents nuWhere k,=0 in the vector wave functions has been sup-
merical results of the convergence test for a conducting cirPreSSed, and the coordinate system in which the vector wave
cular cylinder with a uniaxial chiral coating of an elliptical functions are used has been indicated by the position vector

cross section. It is seen that for a proper truncated nuiper N the vector wave functions. For the Thpolarized incident

reliable results can be obtained for all scattering angles. The
convergence check indicates that the present cylindrical vec
tor wave functions, in association with the generalized mode
matching method, can be reliably utilized to investigate the
two-dimensional boundary-value problem of multilayered
uniaxial chiral objects. To provide criteria for other numeri-
cal method, Fig. 2 illustrates the bistatic echo width of a
conducting circular cylinder with a uniaxial chiral coating of
an elliptical cross section.

20

C. Two circular cylinders

bistatic echo width (dB)

To illustrate the applicability of the present cylindrical
vector wave functions for multiple scattering problems, we 10 s b
now use the addition theorem to study the electromagneti 0 90 180 270 360
scattering of two circular cylinders consisting of uniaxial scattering angle (degree)
chiral media. The geometrical configuration of the cross sec-
tion and symbols used here are illustrated in Fig. 3, where FIG. 2. Scattering pattern of a conducting circular cylinder with

the constitutive relations for cylindgr(j=1,2) are a coating of an elliptical cross section, due to a normally incident
TM,-polarized plane wave. The constitutive parameters epf

D:§]E_§JH, (27@ :2.5‘10, 8222.180, ,u,t:l.S,U,O, ,LLZ:]--Z,UO! and f
=—0.5(eoug) Y% The elliptical-shaped coating has a semimajor
B=y;-H+§-E, (27b axis of 1.3,y and semiminor axis of 1N, and the radius of the

conducting cone is 0)§. The dotted line corresponds to the case
The normally incident plane wave of unit amplitude with where the major axis of the coating is along thaxis, the dashed
an incident anglep™® with respect to thet+x axis can be line is for the major axis along thg axis, and the solid line is for
expanded in terms of the cylindrical vector wave functions:the major axis having an angle ofs27 with respect to thex axis.
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FIG. 3. Geometry configuration of the structure of two circular
cylinders.

plane wave, a™=0 and bi"°=e"¢"7k,. For the
TE,-polarized incident plane wavei™=e"*"7k, and b
=0.
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Based on the addition theorem for the Bessel and Hankel
functions[25], the transformation of the cylindrical vector
wave functions from th®, coordinate to th&©,, coordinate
are obtained:

Q' (krg)= 2 Q(Krp)Im-n(kdpg)e!™ "eve,
(329

Q(n4)(k1rq) =2 Q%)(k.l‘p)Hﬁﬁ n(Kdpg)€' ™M e,
m=—o
(32b

whereQ=M or N, and d,q,¢,g) is the position ofOQ, in
the O, coordinate system.

Using the addition theorem of the cylindrical vector wave
functions, and applying the boundary conditions at each sur-
face of the scatterer to ensure the tangential components of
electric and magnetic fields are continuous, a set of coupled
linear equations involving the scattering coefficients are ob-
tained. For the sake of consistency, details of the formula-

The electromagnetic fields inside the scatterers can b#ons of the solution procedure are organized in Appendix E.
separately expanded in terms of the cylindrical vector wave The bistatic echo width of the scattering structure can be

functions in local coordinate systems:

2
=3, 3 (OMeAl M ki)

©

kd)

j 1 j j 1
+Bg NP (kg r) +CEVL P (k)

rl,
(299

2
M= 3, S (COAT M )

o

+BGUNGY (K ) + oLV (kg T )]
(29b)

for j=1 and 2. Herek,=0 in the weighted coefficients of
the vector wave functions has been suppressed.

obtained by using the asymptotic expansion of the Hankel
function, EQq.(22), and p; ;~p=*d cose for p—o, which
result in

oo

—ing(a—i 1) 2
2 e |n<p(e ikod co&,obg1 )+e|k0d COSquE] ))

n=—ow

2

o

A, =4k,

s}

2 e—in<p(e—ik0d COS¢a$11)+eikod COS‘PaElz))

n=—o

2
+ 4k,

(33

For a TM,-polarized incident plane wave, the first term in the
right-hand side of Eq(33) represents the copolarized echo
width, and the second the cross-polarized one. For a
TE,-polarized incident plane wave, the first and second terms
in Eq. (33) stand for the cross-polarized and copolarized
echo widths, respectively.

The scattered fields are the superpositions of those scat- A9ain, it is important to examine the convergence prop-

tered from each cylinder,

2 2

S j}_}l E,  H%= J_Zl H§es, (30)

whereE;“*andH;*can be represented in ti@ coordinate
system as

Ejsca(fj):n;_m (=DM (ko,rj) +bIIN (ko 1],
(319
Hjsc"’(rj)zn;w (=1)" M po[a! NP (ko,rp) + by

XM P ko, 11, (31b

erties of the final results for the series involved in the scat-
tering by two circular cylinders of uniaxial chiral media.
Table Il presents numerical results for the convergence test
of this scattering structure. It is seen that for proper truncated
numberN, reliable results can be obtained for all scattering
angles. The convergence check indicates that the present cy-
lindrical vector wave functions can be reliably applied to
study the two-dimensional multiple-body problem of
uniaxial chiral media. To provide criteria for future refer-
ences, Figs. 4 and 5 illustrates the bistatic echo width of two
circular cylinders of uniaxial chiral media for TMand TE
polarized incident wave, respectivelyee also Table IV

IV. CONCLUDING REMARKS

In the present investigation, cylindrical vector wave func-
tions are developed to represent the electromagnetic field in a
source-free uniaxial chiral medium. The formulation is
greatly facilitated by using the concept of characteristic
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TABLE Ill. Convergence test of two circular cylinders due to a Jpblarized incident plane wave. The
constitutive parameters of the media are taken tauffé=1.4uq, uV=1.2u0, eV=25¢, eN=2.3,,
andéM=-0.3, andu{?=1.3ug, uP=11u,, P =2.3¢, {?=2.2s, and¢?=—0.5. The geometry
parameters of the scatterer are taken tape 0.4\, a,=0.7Ay, andd=1.5\,. The incident angle is 2/9.

A, I\, (dB) $=0° $=145° $=90° $=135° $=180°
N=3 0.5980[+01] 0.16374+02]  0.2202]+01] —0.26449+00] —0.37412+01]
N=4 0.6198+01] 0.1710f+02] —0.21969+00]  0.10312+00]  0.77866+00]
N=5 0.68301+01] 0.1747%+02] —0.14073+00] —0.43131+01] —0.35832+01]
N=6 0.67600+01] 0.1733[+02] —0.33208+00] —0.11678+01] —0.5791+01]
N=7 0.6763p+01] 0.1732+02] —0.34480+00] —0.12621+01] —0.5744%+01]
N=8 0.67629+01] 0.17322+02] —0.34512+00] —0.12668+01] —0.57480+01]
N=9 0.67629+01] 0.17322+02] —0.34509+00] —0.12663+01] —0.57479+01]
N=10  0.67629+01] 0.17322+02] —0.34508+00] —0.12663+01] —0.57479+01]

waves and the method of angular spectral expansion. Thihe present formulations and those of previous wsksl 1].
formulation developed here generalizes the canonical solud) Noting the available results on the theory of cylindrical
tions of vector wave functions for isotropic media, and re-vector wave functions in an unbounded source-incorporated
covers the case of uniaxial medié=0). For applications of composite mediunj9—-11], the starting points of these for-
cylindrical vector wave functions, a generalized mode-mulations(i.e., the concept of spectral eigenwaves and their
matching method is proposed to study the two-dimensionatompleteness properties, and the Ohm-Rayleigh method
electromagnetic scattering of a uniaxial chiral cylinder withwould fail to work out to the present case, which treats the
an arbitrary cross section and a conducting circular cylindefinite-region source-free mediun2) Although the basis of
with an inhomogeneous coating thickness of a uniaxial chirathe present formulation§.e., the concept of a characteristic
medium. To check the convergence of the present cylindricalvave and the method of angular spectrum expans®the
vector wave functions for nontrivial problem&uch as same as that of Ref8], they treat fundamentally different
multiple-body problems electromagnetic scattering by two materials(i.e., the constitutive relations of the materials are
circular cylinders of uniaxial chiral media is also investi- differeny and the starting points are differefthe present
gated. Excellent convergence properties of the cylindricaformulation starts with theE-field vector wave equation,
vector wave functions in these application examples are nuwhile Ref.[8] began with theH-field one. The present for-
merically verified, which establishes the reliability and appli- mulations can be considered as an alternative application ex-
cability of the present theory. ample of the method of angular spectrum expansi@nin
Here it is worthwhile to point out the differences betweenRef.[8], only the simplest application exampiee., the scat-

bistatic echo width (dB)
bistatic echo width (dB)

0 90 180 270 360 0 90 180 270 360

scattering angle (degree) scattering angle (degree)

FIG. 4. Scattering pattern of two circular cylinders, due to a FIG. 5. Scattering pattern of two circular cylinders, due to a
normally incident TM-polarized plane wave. The constitutive pa- normally incident TE-polarized plane wave. The constitutive pa-

rameters of the cylinders are taken to héY=1.4uy, u!?  rameters of the coating are taken to hgV=1.4u,, '
=12uq, eV=25cq, V=23, and ¢P=-0.3, and u®  =1.2uq, V=25, eV=2.3,, and ¢Y=-0.3, and u{?
=13uy, wP=11uy, &P=2.3¢,, &P=22,, and &2  =13u,, wP=11ug, £P=23¢,, P=22s,, and ¢?
=—0.5. The geometry parameters of the scattereragre0.4\, =—0.5. The geometry parameters of the scattereragre0.5\,

a,=0.7\¢, andd=1.5\,. The dotted line corresponds to the case a,= 0.6\, andd=1.3\,. The dotted line corresponds to the case
of ¢"°=0, the dashed line t@"°= /2, and the solid line ta"° of ¢""°=0, the dashed line t@"°==/2, and the solid line ta"°
=27/9. =27/9.
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TABLE IV. Convergence test of two circular cylinders due to a,-pBlarized incident plane wave. The
constitutive parameters of the coating are taken to & =1.4u,, /J«g )=1.2uq, eM=25,, &M

=230, and&P=-0.3, andu?=1.3uy, u{?=1.1uq, £?=2.3¢q, P=2.2s, and&P=-0.5. The

geometry parameters of the scatterer are taken ta;be0. 5>\0 a2—0.6>\0, andd=1.3\,. The incident

angle is 27/9.

A, /N (dB) $=0° $=45° $=90° $=135° $»=180°
N=3 0.50854+01] 0.13746+02] —0.10151+01] -—0.23631+01]  0.76576+00]
N=4 0.76736+01] 0.14066+02] 0.4979%+01] 0.3752%5+00] —0.51318+01]
N=5 0.83736+01] 0.13728+02] 0.35951+01] 0.68597+00] —0.33950+01]
N=6 0.84118+01] 0.13697+02] 0.36374+01] 0.86800+00] —0.35224+01]
N=7 0.84116+01] 0.13694+02] 0.36486¢+01] 0.85633+00] —0.35213+01]
N=8 0.84114+01] 0.13694+02] 0.36490+01] 0.855883+00] —0.35207+01]
N=9 0.84114+01] 0.13694+02]  0.36490+01]  0.85588+00] —0.35207+01]
N=10 0.84118+01] 0.13694+02]  0.36490+01]  0.85588+00] —0.35207+01]

tering of an infinitely long circular cylindémwas considered, the theory in actual computation when using the spherical

while the present work reports more complicated applicavector wave functions for three-dimensional electromagnetic

tions (i.e., electromagnetic scattering by a cylinder of an arphenomena. Nevertheless, it is believed that the present cy-

bitrary cross section, a conducting circular cylinder with anlindrical vector wave functions and the generalized mode-

inhomogeneous coating thickness, and two circular cylinmatching method would be helpful in analyzing and exploit-

ders. Moreover, a convergence check of the results in theseng the physical phenomena associated with the boundary-

complicated application examples are extensively examinedjalue problems of layered structures, as well as

which establishes the reliability and applicability of the multiscatterers consisting of uniaxial chiral media.

present cylindrical vector wave functions for more complex

structures(4) To make use of the present cylindrical vector APPENDIX A: DETAIL OF THE FIELD

wave functions in the complicated applications, a general- REPRESENTATIONS

ized mode-matching method is proposed, and numerical

implementation is extensively carried out in the present Substituting expressior($) and(11) in Eq. (9), we have

work. the electric field expanded in terms of the eigenvectors in a
It should be pointed out that the generalized modecircular cylindrical coordinate system

matching method presented here, although not requiring the "

eigenfunction expansion of the Green dyadic, is applicable _ 2 * dk 2 e (K )fz’f

only to small aspect-ratio scatterers like the conventional = qm nz

T-matrix method. For large aspect-ratio scatterers, the chal-

lenge of convergence and time consumption must be taken X @~ ket Kpgp COSS= I A (k) COL p— i)

into account. However, this method is obviously superior to . .

the conventional mode-matching methd®,25, which can +By(ky)Sin(— i) J&,+ [~ Aq(kp)Sin(d— ¢y)
only be applicable to a circular cylindrical structure, the per- +Bq(k,)cos ¢ — di) Jes+ e} (A1)

turbation method[13] which is only suitable to a near-

circular cylindrical structure, and thB-matrix method[14] Taking the derivatives of Eq11) with respect top and ¢,
and multipole techniquEL6], both of which require a knowl-  respectively, we have

edge of a source-incorporated solution, and may be regarded

as the modified form of the point-matching methpib], coq ¢p— ) e Keap COLE— )
since they can be utilized under the same conditions and "
have the same challenges for a complex structure. Using the _ E (—iym-1 m(kpqp) —im($- dy)

addition theorem of the cylindrical vector wave functions
and the formulations for a single scatterer, a homogenization
theory for the uniaxial chiral composite media may be estab- (A2)
lished, where a pair-distributed function can result from ex-
periment, theoretical investigation, or numerical results. and
It is of interest to note that the cylindrical vector wave
functions can be expanded as discrete sums of the spherical
vector wave function§26]; therefore the present cylindrical
vector wave functions could be extended to solve problems =— E (—i )m
of spherical structures. Although excellent convergence and m=—e Koap
efficiency of the present cylindrical vector wave functions in (A3)
tackling the two-dimensional physical phenomena have been
demonstrated by extensive numerical computation, one Inserting Eqs(A2), (A3) and(11) into Eg. (A1), we ob-
should carefully examine the convergence and efficiency ofain

m=—o kpqﬁp

Sin ¢ — e ol o4~

MIn(Kpap) e im(é—di).
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w * The solutions to this set of linear equatio@s8)—(A10),
E(r)=>, dk, 2 eqn(k)[Pn(k)e,+Qn(k,)e, in conjunction with Eqs(7a) and (7b), result in the expres-
q=1J—-e n=-w sions of Egs(14a—(140.

Rn(kp)e,l, (A4)
APPENDIX B: DETAILED PROCEDURE
where FOR THE SOLUTIONS OF EQS. (208—(20d)

For simplicity, we introduce

o1 Im(Kyqp)
Pa(k;)= f A 2 [(—um 1%%(@ | in .
" 4 Ve ()= =~ Z (kyqp)Ch(ke=0)~kyeZ” (Kyqp)
MJIn(K,qp)
— (=M pqp q(k )le (Kzz+meg)+i(m—n) ey XAS(kf 0), (B1)
:ZW(_i)nrﬂJn(kpqp)Aq(kz) Xgn(p) =K pqIn(Kogp) BG(k,=0), (B2)
Kpqdp in
p(j) —— _ 7 Pk = (i)'
B an(kpkqPLBq(kz)}e_i(kzz+n¢) (A5) Yan (p) P Zyy (Kopgp) Aq(ke=0) T kpgZy" (Kpgp)
rd X Ch(k,=0), (B3)
Q. (k ):f” deb i (—i)ym-1 3Im(K,pqp) B, (k,) wherep=f(¢), g=1 and 2, anp=e andh. '
mrz $=0 K< o K,qdp oz Multiplying both sides of Eqs(20a—(20d) with e™¢(m
=—N,—N+1,..N—1N) and integrating from O to 2, we
+(—i)m me(kqu) Aq(kz) o i(kzz+ me) +i(m=n) ¢y end up with
kpqp 2
_ ZW(_i)n[mJnmqp)Bq(kz) 2, (1] =01]al (B4)
Kpqdp
2
NJn(KoaP)Aa(KD | _iihsin ah Ko o @nrp1=
B s b 2Z+Ne) | +—I b]=[P][I], B5
S e , (A6) 2, 1Nl + - 2bI=[PI0, (BS)
and . qe (5)
2, A&~ [19b1=[QI[1], (B6)
2
Rik= [ S 11"tk z "
e 3 (AT eg) =~ [1][al, (B7)
% @~ 1(kzz+mg)+i(m=n)y gq=1 Mo
_ _i\n —i(kyz+ne) where[a] and[b] are column vectors of the expansion coef-
2m(=1)Jn(kyqp)e A1 ficients of the scattered waves, respectively, and
By introducing the cylindrical vector wave functions 2 o
(133—(130) and recalling the complete property of this set of (19P) n f (=) e M TMILYR L (p)sin 6

functions[3,25), it is reasonable to assume the electric field
in a uniaxial chiral medium can be represented in the form of F\P
Eqg. (12). Then, comparing the coordinate components of Eq. qn’
(12) with those of Eq.(A4) where P,(k,), Qn(k,), and om in’
Rn(k,) are determined by Eq§A5)—(A7), we derive a setof (]2 = f (—i )n’ei<n’m’>¢[ - Hf12,>(kop)sin 0
equations $=0 P

(p)cosd]dd, (B8)

Ae(k)=—2—iB(k) (A8) —koH', 2" (kop)cos §|d e, (B9)
q\ "z k qlhhz/s
pq
ks 2 Prom=—— [ (=) i<”’m’>¢[i”3 (kop)sin 6
- —h)re — Jn(kop)sin
—B(kz)+|Cq(kz) Aq(ky), (A9) "M iwug Jg-o p I (ko
Kpq
and +kody, (kop)cos 0|d, (810)

K2 -
kﬂBZ(kz)—iszS(kzFZ (A10) (Q)nm=f2 (=) e M mmI4g L (kop)d g, (B1D)
q
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277 ’ H ! !
(=M e M TmMIOXE . (p)d,

(B12)

(qu)mn:J

1= [ (e GHE ) d
$=0
(B13)

forg=1 or 2,p=eorh, m ne[l,2N+1], andm’'=m
—(N+1), n’=n—(N+1). Here [I] is the

(2N+1)-dimension unit vector, and the primes over the
Bessel and Hankel functions denote the derivatives with re

spect to the arguments.
Straightforward algebraic manipulation for Eqd4)-
(B7), we obtain

(1277 {DV]

. lopmo
[a]_ kO

57-17p(2 _1i‘"ﬂ (27-1
+[1™]7D ]} [ko (1977 HP]

+[|(5)]‘1[Q]}, (B14)
k
[b]:[iwio N
-1
+[D<2>]‘1[|<5>]} [D] Y P]-[D?] Q]I
(B15)
where
[DP]=[1*M[C@]+[12M[CcV], (B16)
[D@]=[A*][C?]+[AZ][CY], (B17)
and

[c<l>]=[[lle]1[|Ze]—[A”‘]1[A2“]]1[[lle]l[l<2>]

L [Alh]1[|<5>]}, (B18)

lowg
[c@]:[[ﬂﬂ1[1191—[A2“]1[A1“]]1[[|2911[l<2>]

(B19)

+ Ii [AZh]‘l[I(5)]}
wUo

- _ (2) _i
After numerically evaluating the matrices involved, Egs. An(po) = —koHp"(Kopo) Cn(po) —iweoH
(B14) and(B15) would result in the expansion coefficients of

the scattered fields.

APPENDIX C: ELECTROMAGNETIC SCATTERING
BY A UNIAXIAL CHIRAL CIRCULAR CYLINDER
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uniaxial chiral circular cylinder of radiugy. In the case of a
TM,-polarized incident plane wave illuminating along the
+Xx axis, incident electromagnetic fields can be expanded in
terms of the circular cylindrical vector wave functions, as
presented in Eq$18a and(18h). The electromagnetic fields
excited inside the scatterer can be represented in terms of the
cylindrical vector wave functions in the way we presented in
Sec. Il. Also, the scattered electromagnetic waves may have
TM, and TE components, and should be expanded as Egs.
(198 and(19b).

Applying the widely employed mode-matching method
[12,25 to have the boundary conditions of continuous tan-
gential electric and magnetic fields satisfied at the outer sur-
face of the scattergi=p,, the expansion coefficients of the
scattered fields are derived as

B SIVE (po)X
WﬂoPoAn(P ) ( Z)[ n(pO) Zn(pO)
Sn(P0)Xn(po)] (C1)
and
Eo i
b,= O(K2)| In(Kopo)Cn(po) + — Jﬁ(koPO)Dn(Po)},
n( O) 7o
(C2
where
Vgn(PO) Ap(kz)kqun(kqu0)+ Cp(kz)‘]n(kpqpo)
(C3
Xgn(Po) = Bg( kz) kqun( kpqu) (C4)
for g=1 and 2 andp=e andh. In Egs.(C1) and(C2),
Calpo)=—koH'Z (Kopo)[Vin(po) XBn(p0)
—VB(po) Xi(po) 1~ weoHP[VE,(po) Vin(po)
—V5.(po)Vin(po) ], (C5)
Dn(po) =koH?" (kopo) [ X5n(p0) X3n(Po)

— X5 (po) Xin(po) 1+ i weoHP[VEL(po) X5n(Po)
_Vgn(Po)Xgn(Po)], (Co)

(2 (Kopo) Dl po)-
(C7)

Due to the emergence of the Dirac delta functiifk,) in
Eqg. (C1) and(C2), the infinite integration of thé, variable
for the scattered fields has actually disappeared. Using the
asymptotic expression of the Hankel function in the far re-

Here, we will present explicit expressions of expansiongion, Eq.(22), the bistatic echo width of this structure Eq.
coefficients of the scattered field for the scattering of a(21) can be rewritten in a more explicit form
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2 and the matrices involved in Eq®6)—(D9) are all diagonal
Ay ()= " EZ cogng) with the diagonal elements given as
0
2 (XID)py=X0(p=a)8(m'=n’),  (D10)
(CY
(Vi) me=Vi (p=a)8(m'=n")  (D1Y)
where &, is the Neumann factor, i.ed,=1 forn=0, and 2
for n>0. for mne[l,2N+1] and m'=m—-(N+1), n’=n
—(N+1).

After substituting Egs(D4) and (D5) into Egs. (26a3—
(26d), multiplying both sides of the resulting equations with
€™ (m=—N,—N+1,..,N—1N), and integrating from 0O

to 27, we end up with

APPENDIX D: SOLUTIONS FOR SCATTERING
COEFFICIENTS OF A CONDUCTING CIRCULAR
CYLINDER WITH AN INHOMOGENEOUS COATING
THICKNESS OF UNIAXIAL CHIRAL MEDIUM

For simplicity, we introduce

2
q; [19e)relM1=[17[al,

Va(p)= - % 2 (kyqp) Chk=0) —kqZ (Kyqp) (012
X AR(k,=0), (DY) 2
_ _ Z lq“][e<1>]+ [|<2>][b] [PI[1], (D13
XPD () =K,qZU (K ,qp) BE(k,=0), (D2) q=1
. 2
Yo (p)=— % Z0 (k) AP(ky=0) +K,aZ (K,qp) q; [A%][ eV ]-[19][b]=[QI[I], (D14)
X Ch(k,=0), (D3) 2
wherep=f(¢) or p=a, q=1 or 2,p=e or h, andz{)( ) qg [Aqh][egl)]_ T lown ['(5)][3] (D15)

=J,() or ZW()=H?() for j=1 and 4, respectively.
From the boundary conditions Eq®259 and (25b) at p
=a, we have

where[a] and[b] are column vectors of the expansion coef-
ficients of the scattered waves, and

[6(14)]:[All][e(ll)]+[A12][e(zl)], (D4) [qu]:[Bg(l):H_[Bg(4)][A1q]+[Bg(4)][A2q], (D16)
[9&4)] [AZl][e )]+[A22][92 (D5) [qu]=[Cg(l)]+[Céu)][Alq]+[C§<4)][A2q],
(D17)

where[ )] (for g=1 or 2 andj=1 or 4 are column vec-
tors of the expansion coefficients for the internal fields of theWIth
coating, and

[All] — [[X2(4)]—1[X1(4)]
_ [V2(4)]7l[Vl(4)]]f1[[V2(4)]71[V1(1)]
[,

) 2
(BR) o= f (=i)Me MY Rl (p)sin 6
¢=0

(D6) +VPU(p)cos o1d,

(1) = f: (=) W[

(D18)

[AY]=[[X**]71[X*]

H( )(kop)sm 0
—[V2(4)]*1[V1(4)]]*1[[V2<4)]*1[V2(1)] P

—[X2@]) XM, (D7) —koHY (kop)cos 0|d g, (D19)
[AZI]:[[X1(4)]71[X2(4)] , -
_ - - - - T —i<n’—m’)¢1 i
[V 2] Vi@ ] -1 vid) (P)nm Py L—o( e [p Jnr(kop)sin 6
—[X¥H] XA, (D8)
(AZZ] = [ XL 1 x20)] +Kod; (kop)cos 6 |d e, (D20)
— VIO VAV VA 2
X)X 09 (Qnm= f L (CDMe T (kop)d s, (D21)
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(C3m= [ (=ien i exe ),
$=0
(D22)

2w ’ H [
(1) = L-o(_”" e MM GH, (Kop) d
(D23)

for q=1 or 2, andp=e or h.
Straightforward algebraic manipulation for Eq&12)—
(D15) yields

[a]= ["‘I’(ﬂ [12]- D]
0
_1 .
+[|<5>]l[D<2>]} ['%[@HPJ

+[|(5)]_1[Q]}, (D24

Ko

(D1-171(2
o D12

[b]=

-1
+[D<2>]1[|<5>]} [(D®]~}[PI-[D®]7{Q]]

(D25
where
[DD]=[1""[C®]+[17M[CM], (D26)
[D@]=[A][C?]+[AZ"[CP], (D27)
and

[c<1>]=[[lle]1[1291—[A1“]1[A2“]]1[[lle]l[l<2>]

LTS (5)}
+iw,uo[A 111%™, (D28)

[c<2>]=[[|26]l[lle]—[AZ“]1[A1“]]1[[|2‘*]1[|<2>]

+ i [AZh]‘l[I(S)]} (D29)

loo
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APPENDIX E: DETAILS OF THE SCATTERING OF TWO
UNIAXIAL CHIRAL CIRCULAR CYLINDERS

The boundary conditions at; =a, can be written as

2

(A" + (B 1+[C7Ia®)= 2, [DF Ve
(ED
[AL 16"+ [BLM][b ]+ [CLVI[b™)]
iou 2
S 2 ORI (E2)
[AZIa™]+ (B ][a™ ] +[C5 ][a®)
iou 2
g 2 B (E3)

2
[ASP ][]+ [ B (b ]+ [CSM b ]= El [ESDell],
=

(E4
and the boundary conditions aj=a, can be written as

2

(A& +[C7 )@ ] +[BY][a®]= 2, [DF[e’],
=

(E5)

[AP[bMe]=[CPI[bD]+[BP[b?)]

iw

2
__wko h
Sl q;[Dq@][eg”]. (ES)

[A§V1[a"]+[CEV 1]+ B 1[a]

. 2
_ Iw,uo h
ST & R €7

2

[ASI00"T+[CEV 1B T +[BE 1D ™]= X [EG®Ile”],
=

(E8)

where

(AD) = (=)™ Iy (ko)™ 913" (Koa)),
(E9)



(A= (=)™ gy e (kod) €™ M43, (Koay ),

(E10
(BY)mn=(—)"HZ (koa)) 8(m’—n"),  (E1D)
(BI)mn=(—)"HZ (koa))8(m'—n’),  (E12

(2kod)e! ™ M43 (koay),
(E13

(Cmn=(—D"HE)_ |

H®

m’'—n’

(2kod) ™M T4 (ko)
(E14

(CI) o= (=)
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p(j) (=" () 0] p(j)
(DF)mn="— | Kiadn (Kpga) AG (k.= 0)
in’
+—.J (k'ha))ChV(k,=0) [s(m’'—n"),
(E19H
(i) (_ " M) (i)
(ESY)mn= k’(k'aJ)BpJ(k =0)8(m’'—n’),
(E19
with ¢1=0, ¢o=m, j=1 or 2, p=e or h, mne[1,2N

+1], and m’=m—(N+1), n"=n—(N+1). Straightfor-
ward manipulation of EqSE1)—(E8) will give rise to solu-
tions of the scattering coefficient vectda™], [b(Y)], and
[a®], [b®], respectively.
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